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a b s t r a c t

A data-driven bandwidth selection method for backfitting estimation of semiparametric
additive models, when the parametric part is of main interest, is proposed. The proposed
method is a double smoothing estimator of the mean-squared error of the backfitting
estimator of the parametric terms. The performance of the proposed method is evaluated
and compared with existing bandwidth selectors by means of a simulation study.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The semiparametric additive model (SAM) is a regression model which consists of a sum of unknown smooth functions
and parametric terms; see e.g. Hastie and Tibshirani (1990), Fan and Jiang (2005) and references therein. Formally, themodel
is written as

yi =

D
d=1

βd(xdi) +

P
p=1

τpzpi + ϵi =

D
d=1

µd(xdi) + zTi γ + ϵi, (1)

with yi the response, i = 1, . . . , n, βd(xdi), d = 1, . . . ,D, and τp, p = 1, . . . , P , unknown smooth functions and param-
eters, respectively, where xd:s and zp:s are covariates. We assume E(ϵi) = 0,Var(ϵi) = σ 2 and have µd(xdi) = βd(xdi) −

E

β(xdi)


, zi = (1, z1i, . . . , zPi)T and γ = (α, τ1, . . . , τP)

T , with α = E
D

d=1 βd(xdi)

. Let y = (y1, . . . , yn)T , Z = (z1,

. . . , zn)T and X = (x1, . . . , xn)T with xi = (x1i, . . . , xDi)T be the vector and matrices containing the data.
This model is often preferable, as opposed to the fully nonparametric additive model, if the relationship between zi and

yi is assumed to be linear while the shape of the relationships between the xdi:s and yi is more uncertain. Another scenario
is if zi contains categorical variables in which case smooth functions are not an option.

An often used method for estimating additive models is the classical backfitting, readily available, e.g., in the R-package
gam, (Buja et al., 1989; Hastie and Tibshirani, 1990). For other estimation methods than classical backfitting, see, e.g., Linton
and Nielsen (1995), Eilers and Marx (1996), Mammen et al. (1999), Fahrmeir et al. (2004), Lin and Zhang (1999) and Wood
(2000).

In order to estimate the smooth functions in (1), irrespective of the choice of the estimator, some kind of smoothing
parameters (or bandwidths) must be selected. If the classical backfitting estimator of (1) is employed together with the
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‘‘usual’’ optimal bandwidth, which most bandwidth procedures, e.g., cross-validation attempts to select, γ̂ does not achieve
the parametric rate of convergence, it is not

√
n-consistent (Rice, 1986; Speckman, 1988; Robinson, 1988; Linton, 1995;

Opsomer and Ruppert, 1999). The purpose of this paper is to investigate bandwidth selectionwhen (1) is fitted by backfitting
and the parametric part is of main interest. This was shown by Speckman (1988) for SAM with D = 1, often called the
partially linear model, and by Opsomer and Ruppert (1999) for D > 1.

For a SAM with D = 1 Speckman (1988) proposed an alternative estimator which is
√
n-consistent. That estimator is

equivalent to the profile likelihood estimator, treated in e.g. Maity et al. (2007), if ϵi ∼ Normal. He et al. (2007) extend this
estimator to D > 1 but no distributional results are derived for this case.

In this paper, we propose a, for this setting, new, intuitive and easily implemented bandwidth selection procedure
for backfitting estimation of SAMs. As Opsomer and Ruppert (1999), we propose to select the smoothing parameters by
using an estimate of MSE(γ̂|X, Z). In contrast with Opsomer and Ruppert (1999), our estimator does not use an asymptotic
approximation of the bias of γ̂ . Properties of the new procedure are examined and compared with competing selection
methods in a simulation study. Up to our knowledge this is the first attempt to study by simulation the properties of
estimators of γ in (1) obtainedwith different bandwidth selectors.We show that both the new procedure and the procedure
proposed by Opsomer and Ruppert (1999) improve on cross-validation in the sense that estimates of γ obtained with these
procedures have lower mean squared errors than estimates obtained with cross-validation. Additionally, we show that the
new procedure is, in most cases, preferable to the one in Opsomer and Ruppert (1999).

The paper is organized as follows. The next section presents backfitting estimation of SAMs and a closed-form expression
of MSE(γ̂|X, Z). Section 3 focuses on bandwidth selection in SAMs. We review some asymptotics regarding

√
n-consistency

of γ̂ , describe existing bandwidth selectors and introduce a new bandwidth selectionmethod. These selectors are compared
by simulation in Section 4. The paper is concluded in Section 5.

2. Estimating SAM

2.1. Backfitting

Backfitting is an iterative estimation method. For estimation of a SAM, starting with some initial estimates µ̂
0
d , of

µd = (µ(xd1), . . . , µ(xdn))T , for d = 1, . . . ,D, γ̂ and µ̂d are repeatedly computed, until the estimates converge, according
to 

γ̂ =

ZTZ

−1ZT


y −

D
d=1

µ̂d


,

µ̂d = Md


y − Zγ̂ −


k≠d

µ̂k


, d = 1, . . . ,D,

(2)

whereMd = (I− 11T/n)Sd. I denotes the n× n identity matrix, 1 a vector of 1:s with length n and Sd is a smoothing matrix
which is only a function of the design points xdi, i = 1, . . . , n, and a smoothing parameter hd. For instance, β̂d = Sdy
is a linear smoother of β̃d(xdi) = E(yi|xdi). Typical examples of linear smoothers are kernel regression, splines and local
polynomial regression; see e.g. Fan and Gijbels (1996, pp. 14–45).

Provided that the backfitting procedure converges to a unique solution (see Opsomer, 2000, for sufficient conditions) the
backfitting estimator is equivalent to the following non-iterative solution

γ̂ =

ZT (I − Qµ)Z

−1ZT (I − Qµ)y, (3)

µ̂ =

D
d=1

µ̂d = Qµ


y − Zγ̂


,

with Qµ =
D

d=1 Qd. For D = 1, Qµ = Q1 = M1 and, for D = 2,Qd =

I − (I − MdMk≠d)

−1(I − Md)

, k = 1, 2,

Hastie and Tibshirani (1990, p. 119). For D > 2, Opsomer (2000) provides the following recursive definition: Qd =

I −

(I − MdQ[−d]
µ )−1(I − Md)


, where Q[−d]

µ is the additive smoother matrix for the (D − 1)-variate function µ = µ1 + · · · +

µd−1 + µd+1 + · · · + µD. Now, letting µ =
D

d=1 µd, we can derive:

Bias(γ̂|X, Z) =

ZT (I − Qµ)Z

−1ZT (I − Qµ)µ, (4)

and

Var(γ̂|X, Z) = σ 2diag


ZT (I − Qµ)Z
−1ZT (I − Qµ)


ZT (I − Qµ)Z

−1ZT (I − Qµ)
T

, (5)
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