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a b s t r a c t

A semiparametric method based on smoothing spline is proposed for the estimation of
varying-coefficient partially linear models. A simple and efficient method is proposed,
based on a partial spline technique with a lower-dimensional approximation to
simultaneously estimate the varying-coefficient function and regression parameters. For
interval inference, Bayesian confidence intervals were obtained based on the Bayesmodels
for varying-coefficient functions. The performance of the proposed method is examined
both through simulations and by applying it to Boston housing data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider observations yi = η(xi) + ϵi, i = 1, . . . , n, where yi is the response variable, xi are predictors, and ϵi are
i.i.d. random errors with E(ϵi) = 0 and Var(ϵi) = σ 2. Classical parametric regression would assume η to be of the form
η(x, β), where β parameters are estimated from the data. The parametric assumption can be relaxed by allowing η to vary
in a high (possibly infinite)-dimensional function space and this leads to nonparametric function estimation approach. A
major problem when applying nonparametric methods is that they suffer the ‘‘curse of dimensionality’’. Many attempts
have been made to overcome this using various structural modeling techniques, including the generalized additive model
and varying-coefficient models. The application of the semiparametric approach to the varying-coefficient model leads to
the varying-coefficient partially linear model (VCPLM) in which some of the predictors have flexible coefficient functions
whereas others have constant coefficients. For predictors x and z, the VCPLM can be expressed as

yi = xTi η(ui)+ zTi β + ϵi, i = 1, . . . , n, (1)

where xi is of dimension p1 × 1, zi is of dimension p2 × 1, ui = (ui1, . . . , uip1) is a vector of predictors, η(·) =

(η1(·), . . . , ηp1(·))
T is a p1 × 1 vector of unknown smooth functions, and β is a p2 × 1 vector of unknown parameters.

The varying-coefficient components in (1) provide a way to determine how the different values of covariate u influence the
effect of x on y by allowing the coefficient of x to be a function of u, which makes the model flexible.

The VCPLM (1) covers many common regression models. When β = 0 and x = 1, the estimation of the model in
(1) reduces to classical nonparametric function estimation problem. When p1 = 1 and x = 1, the model reduces to the
partially linear model (Wahba, 1984; Gu, 2002; Kim, 2010), while this becomes the varying-coefficient model when β = 0
(Hastie and Tibshirani, 1993; Fan and Zhang, 1999; Fan et al., 2003; Eubank et al., 2004). The varying-coefficient model have
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been applied in many different applications, including generalized linear models, time series analysis, and longitudinal data
analysis (e.g. Cai et al., 2000; Chiang et al., 2001; Huang et al., 2004; Senturk and Muller, 2008, and references therein).

Themodel (1) has been studied over decades by using various nonparametric estimationmethods; kernel-basedmethods
(Zhang et al., 2002; Xia et al., 2004; Fan andHuang, 2005; Li andRacine, 2010) and spline-basedmethods (Hoover et al., 1998;
Lu et al., 2008; Wang and Ke, 2009; Ahmad et al., 2010). The spline-based methods are found to be more attractive for its
flexibility to involve multiple smoothing parameters, while they often encounter computational challenge in practice since
the number of spline basis functions can be large (Hoover et al., 1998; Krafty et al., 2008).

In this paper we propose a simple and efficient method based on partial spline techniques with a lower-dimensional
approximation to estimate both the varying-coefficient function and regression parameters. The smoothing parameter
was selected using modified generalized cross-validation (GCV). For interval inference, Bayesian confidence intervals were
obtained based on the Bayes models for varying-coefficient functions.

The paper is organized as follows. Section 2 describes the partial spline in a lower-dimensional approximating function
space and the Bayes model for the estimator. Section 3 presents the computation method and its algorithm employing
smoothing parameter selection methods. Section 4 reports the numerical results from simulation examples, and Section 5
describes the application of the proposed method to Boston housing data. Some concluding remarks are given in Section 6.

2. The model

2.1. Partial splines

A partially linear model is described by

yi = η(ui)+ zTi β + ϵi, i = 1, . . . , n. (2)

Partial splines estimate η and β in (2) are obtained by minimizing the following penalized least squares functional:

1
n

n
i=1

{yi − η(ui)− zTi β}
2
+ λJ(η), (3)

where J(η) is a roughness penalty functional, and smoothing parameter λ controls the trade-off between the lack of fit
and the roughness of η. The proper selection of smoothing parameter determines the performance of the estimator. The
minimizer of (3) is in infinite-dimensional space H ⊆ {f : J(f ) < ∞}. Specifically, the minimizer of (3) lies in a Hilbert
spaceH = H0⊕HJ , whereH0 = H00⊕NJ ,H00 =span{ψl, l = 1, . . . , p2}, {ψl} are rowsof thematrix z,NJ = {η : J(η) = 0}
is the null space of J(η), and space HJ is a reproducing kernel Hilbert space(RKHS) with J(η) as the square norm. Note that a
space H in which evaluation functional [x]f = f (x) is continuous is called an RKHS, which possesses a reproducing kernel
(RK) R(·, ·), a nonnegative definite function satisfying ⟨R(x, ·), f (·)⟩ = f (x), ∀f ∈ H , where ⟨·, ·⟩ is the inner product in H .
Letting J(f ) =

 1
0 f̈ 2dt on T = [0, 1] yields the popular cubic splines with NJ = span{1, k1(t)}, where k1(t) = t − 0.5. In

HJ = {f :
 1
0 fdt =

 1
0 ḟ dt = 0, J(f ) < ∞}with J(f ) as the square norm, one has the RK RJ(t1, t2) = k2(t1)k2(t2)−k4(t1−t2),

where kν = Bν/ν! are scaled Bernoulli polynomials. Wahba (1990) and Gu (2002) provide details of the RKHS and its
properties.

A data-adaptive lower-dimensional approximation can be used in penalized likelihood methods, as originally proposed
by Gu and Kim (2002) for regression. They showed that the convergence rate of the minimizer of the penalized likelihood
functional in Ȟq = NJ ⊕ HJ was the same as that in the lower-dimensional function space Ȟq = NJ ⊕ span{RJ(wj, ·), j =

1, . . . , q}, where {wj} are random subsets of {ui, i = 1, . . . , n}, as long as q ≍ n2/(pr+1)+ϵ , where for some p ∈ [1, 2], r > 1,
ϵ > 0 is arbitrary. Here p represents the smoothness of the true function and p = 2 is used under the assumption that
the true function is sufficiently smooth. We extend their results to the model (1) so as to speed up the computation of the
function estimators without any loss of performance. The constant r characterizes the smoothness of the model and r = 4
is used for the cubic spline.

Letting h(z, u) = η(u) + zTβ in (2) and using an argument similar to that of Wahba (1990) for partial splines, the
minimizer of (3) in Hq = H0 ⊕ span{RJ(wj, ·), j = 1, . . . , q} can be written as

h =

m
ν=1

dνφν(u)+

q
i=1

ciRJ(wi, u)+

p2
l=1

βlψl, (4)

where {φν} is a basis of null space NJ . Then, the problem becomes to find β , c, and d so as to minimize

(y − Sd − Rc −Σβ)T (y − Sd − Rc −Σβ)+ λcTQ c,
where S is n × m with (i, ν)th entry φν(ui), R is n × q with (i, j)th entry RJ(ui, wj), Q is a q × q matrix with (i, j)th entry
R(wi, wj), andΣ is n × dwith lth column ψl. Letting ď = (dT ,βT )T and Š = (S : Σ) yields the minimization of

(y − Šď − Rc)T (y − Šď − Rc)+ λcTQ c.
This minimization can be performed using the method of penalized least squares described in Kim and Gu (2004).
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