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a b s t r a c t

A Bayesian semiparametric stochastic volatility model for financial data is developed. This
nonparametrically estimates the return distribution from the data allowing for stylized
facts such as heavy tails of the distribution of returns whilst also allowing for correlation
between the returns and changes in volatility, which is usually termed the leverage effect.
An efficient MCMC algorithm is described for inference. The model is applied to simulated
data and two real data sets. The results of fitting the model to these data show that
choosing a parametric return distribution can have a substantial effect on inference about
the leverage effect.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last couple of decades, stochastic volatility (SV) models have enjoyed great popularity for analysing financial
data. This popularity can be mainly attributed to the development of new, more advanced techniques in econometrics,
as well as the availability of rapidly increasing computing power. The SVmodel as introduced by Taylor (1982) captured the
heterogeneity of daily returns of sugar prices using a latent autoregressive process of order 1 for the logged variance of a
normal return distribution. This model allowed heavy-tails for the unconditional distribution of returns and time-varying
volatility. However, this model was unable to capture other features of financial data such as heavy tails of the conditional
distribution of returns, price jumps and the leverage effect. Black (1976) introduced the term leverage effect when observing
that a positive return tends to lead to a smaller increase in its conditional variance than a negative return of the same size.
Following the work of Taylor (1982), many extensions of the SV model have been introduced incorporating such stylized
features. This paper will address the issue of building an SV model with a leverage effect and a heavy tailed conditional
distribution of returns within the Bayesian nonparametric framework.

Harvey and Shephard (1996) introduced an SV model that could capture the leverage effect. Let Pt denote the daily price
of an asset or a stock index at time t for t = 1, . . . , n. The daily return of the asset or the stock index at time t is defined to
be yt =

Pt
Pt−1

− 1. The nonlinear SV model with leverage of Harvey and Shephard (1996) is

yt = β exp (ht/2) ϵt (1)

and

ht+1 = µ+ φ (ht − µ)+ ηt

where β > 0, ht is the log-volatility at time t and φ is a persistence parameter, for which it is assumed that |φ| ≤ 1 to ensure
the stationarity of ht . The parameters β and µ both control the unconditional variance of yt and the model is usually made
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identifiable by assuming that either β = 1 or µ = 0. Unlike earlier SV models, the error terms (ϵt , ηt) are independently
and identically distributed according to a bivariate normal distribution with mean 0 = (0, 0)′ and covariance matrix

Σ =


1 ρση
ρση σ 2

η


where σ 2

η is the variance of the increment ηt of the log-volatility and ρ is the correlation between the error terms. The
addition of this parameter introduces correlation between the errors in the return distribution ϵt and the increments in
the log-volatility from time t to time t + 1 and so allows the model to capture the leverage effect. The volatility at time

t = 1 is assumed to be drawn from the stationary distribution which is h1 ∼ N

µ,

σ 2
η

1−φ2


, where x ∼ N(m, σ 2

x ) represents

that x follows a normal distribution with meanm and variance σ 2
x . Omori et al. (2007) discussed Markov chain Monte Carlo

(MCMC) methods for this model. The equation for yt non-linearly depends on ht in (1) and so the model is a non-linear state
space model. Omori et al. (2007) worked with y⋆t = log(yt + c)2 where c is small which leads to a linear state space model.
The error terms of the return equation in this representation, log ϵ2t , which follow a logχ2

1 distribution, can be accurately
approximated by a 10-componentmixture of normals. Nakajima and Omori (2009) extended thework of Omori et al. (2007)
to incorporate jumps and heavy tails. An extension of the stochastic volatility to include leverage and heavy tails was also
proposed by Jacquier et al. (2004) who make posterior inference using the non-linear representation of the model.

Several Bayesian nonparametric approaches to modelling the heavy tails in financial time series have recently been
proposed. Ausín et al. (2010) and Kalli et al. (2011) introduced GARCH semiparametric models. Ausín et al. (2010) suggested
modelling the error terms of the return equation with a Dirichlet process mixture of normals model. They fitted their
semiparametric model to both the Bombay Stock Exchange Index and the Hang Seng Index and found evidence that
their model better described the tail behaviour of the return distribution. Kalli et al. (2011) introduced an alternative
semiparametric GARCHmodel where the error terms of the return equation aremodelled using an infinitemixture of scaled
uniform distributions. The empirical findings are similar to those discussed in Ausín et al. (2010). In stochastic volatility
models, Jensen and Maheu (2010) and Delatola and Griffin (2011) both nonparametrically modelled the return distribution
using a Dirichlet process mixture of normals to define a semiparametric SVmodels. Jensen andMaheu (2010) used the non-
linear representation of an SV model whilst Delatola and Griffin (2011) work with a linearized representation by modelling
log(y2t + c). Both models were shown to be better at capturing the tail behaviour of the returns than a simple SVmodel with
a normal return distribution.

The scope of this paper is the extension of the work of Nakajima and Omori (2009) using Bayesian nonparametric
techniques. The return distribution of the SVmodel will be flexibly modelled using a Dirichlet process mixturemodel which
allows for several of the stylized features of returns, such as leverage and heavy tails of the conditional distribution of
returns, to be captured. The flexibility of the Dirichlet process mixture model avoids the need to introduce extra parameters
to capture features of the return distribution. An alternative semiparametric SV model with leverage was introduced by
Jensen and Maheu (2011) who used a bivariate Dirichlet process mixture model for the errors in the nonlinear SV model
with leverage. In the empirical analysis of both Jacquier et al. (2004) and Nakajima and Omori (2009), there was evidence
that their SV model with heavy tails and leverage fitted the examined data better than models based on the assumption of
normality. These findings show that the commonly-made assumption of normality of error terms does not hold in many
cases.

The paper is structured as follows. Section 2 describes our Bayesian nonparametric model with leverage (SVL-SPM),
Section 3 reviews the sampling strategy for MCMC estimation of this model, Section 4 reports applications of the method
to simulated and financial data examples (Microsoft asset prices and the Standard and Poors 500 index), and Section 5
concludes.

2. Semiparametric stochastic volatility model with leverage

This section presents a flexible version of the linear state-space representation of the SVmodel with leverage (SVL-SPM).
The SVL-SPM extends the parametric model with leverage presented by Omori et al. (2007) which will be referred to as
the SVL-PM. The next two subsections summarize the concepts of the SVL-PM and the Dirichlet process mixture model
respectively which will be used to build the SVL-SPM.

2.1. Parametric stochastic volatility model with leverage

A linear state-space representation of the non-linear SVmodel with leverage (SVL-PM) in (1) was derived by Omori et al.
(2007) who take the logarithm of the squared returns. We briefly review their development. The SVL-PM is

y⋆t = ht + zt

and

ht+1 = µ+ φ (ht − µ)+ ηt
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