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a b s t r a c t

In this paper, we introduce the generalized exponential–power series (GEPS) class of
distributions, which is obtained by compounding generalized exponential and power
series distributions. The compounding procedure follows the same way as previously
carried out in introducing the complementary exponential–geometric (CEG) and the two-
parameter Poisson–exponential (PE) lifetime distributions. This new class of distributions
contains several lifetimemodels such as: CEG, PE, generalized exponential–binomial (GEB),
generalized exponential–Poisson (GEP), generalized exponential–geometric (GEG) and
generalized exponential–logarithmic (GEL) distributions as special cases.

The hazard function of the GEPS distributions can be increasing, decreasing or bathtub
shaped among others. We obtain several properties of the GEPS distributions such as
moments, maximum likelihood estimation procedure via an EM-algorithm and inference
for a large sample. Special distributions are studied in some detail. At the end, in order
to show the flexibility and potentiality of the new class of distributions, we demonstrate
applications of two real data sets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider a systemwith N components, where N (the number of components) is a discrete random variable with support
{1, 2, . . .}. The lifetime of ith (i = 1, 2, . . . ,N) component is the positive continuous random variable, say Xi, whose
distribution belongs to one of the lifetime distributions such as exponential, gamma, Weibull, Pareto, etc. The discrete
random variable N can have some distributions such as geometric, zero-truncated Poisson, logarithmic, and the power
series distributions in general. The non-negative random variable Y denoting the lifetime of such a system is defined by
Y = min1≤i≤N Xi or Y = max1≤i≤N Xi , based on whether the components are series or parallel.

In recent years, many distributions to model lifetime data have been introduced by considering a system with
series components, such as the exponential–geometric (EG), exponential–Poisson (EP), exponential–logarithmic (EL),
exponential–power series (EPS), Weibull–geometric (WG) and Weibull–power series (WPS) distributions which were
introduced and studied by Adamidis and Loukas (1998), Kus (2007), Tahmasbi and Rezaei (2008), Chahkandi and Ganjali
(2009), Barreto-Souza et al. (2011) and Morais and Barreto-Souza (2011), respectively.

By considering a systemwith parallel components, Barreto-Souza and Cribari-Neto (2009) and Louzada-Neto et al. (2011)
introduced the exponentiated exponential–Poisson (EEP) and the complementary exponential–geometric (CEG) distribu-
tions where the EEP is the generalization of the EP distribution and the CEG is complementary to the exponential–geometric
model proposed by Adamidis and Loukas (1998). Recently, Cancho et al. (2011) introduced the two-parameter Pois-
son–exponential lifetime distribution which arises on a latent complementary risk problem base (Basu and Klein, 1982).

By taking a system with parallel components in which the random variable N has the power series distributions
and the random variable Xi follows the generalized exponential (GE) distribution, we introduce the generalized
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exponential–power series (GEPS) class of distributions which contains the complementary exponential–geometric (CEG)
and Poisson–exponential (PE) as special cases. The GEPS class of distributions contains several lifetime models such as:
generalized exponential–binomial (GEB), generalized exponential–Poisson (GEP), generalized exponential–geometric (GEG)
and generalized exponential–logarithmic (GEL). Themain reasons for introducing the GEPS class of distributions are: (i) This
class of distributions is an important model that can be used in a variety of problems inmodeling lifetime data. (ii) This class
of distributions is a suitablemodel in a complementary risk problembase in the presence of latent riskswhich arise in several
areas such as public health, actuarial science, biomedical studies, demography and industrial reliability. (iii) It provides a
reasonable parametric fit to skewed data that cannot be properly fitted by other distributions. (iv) This class contains several
lifetime models as special cases.

The paper is organized as follows. In Section 2, we define the class of GEPS distributions. The density, survival and hazard
rate functions and some of their properties are given in this section. In Section 3, we derive quantiles and moments of GEPS
distributions. In Section 4, we present some special distributions which are studied in detail. Estimation of the parameters
bymaximum likelihoodmethod and inference for large sample are presented in Section 5. The EM-algorithmwith amethod
for evaluating the standard errors from the EM-algorithm is presented in Section 6. Simulation study is given in Section 7.
Applications to two real data sets are given in Section 8. Finally Section 9 concludes the paper.

2. The class of GEPS distributions

The random variable X has a generalized exponential (GE) distribution (Gupta and Kundu, 1999) with parameters α and
β if its cumulative distribution function (cdf) takes the form

G(x) =

1 − e−βxα , x > 0,

where α > 0, β > 0. The corresponding probability density function (pdf) is

g(x) = αβe−βx 1 − e−βxα−1
.

Given N , let X1, . . . , XN be independent and identically distributed (iid) random variables from GE distribution. Here,
let N be a discrete random variable with a member of power series distributions (truncated at zero) with probability mass
function given by

P (N = n) =
anθn

C(θ)
, n = 1, 2, . . . ,

where an ≥ 0 depends only on n, C (θ) =


∞

n=1 anθ
n, and θ ∈ (0, s) is chosen in a way such that C(θ) is finite and its first,

second and third derivatives are defined and shown by C ′(.), C ′′(·) and C ′′′(·). For more details on the power series class of
distributions, see Noack (1950).

Let X(n) = max1≤i≤N Xi, then the conditional cdf of X(n)|N = n is given by

GX(n)|N=n(x) = (G(x))n =

1 − e−βxnα ,

which has a GE distribution with parameters nα and β .
The Generalized Exponential–Power Series (GEPS) class of distributions, that we denote by GEPS(α, β, θ), is defined by

the marginal cdf of X(n), i.e.,

F(x) =

∞
n=1

anθn

C (θ)
(G(x))n =

C (θG(x))
C(θ)

=
C

θ

1 − e−βx

α
C(θ)

, x > 0. (1)

This new class of distributions includes lifetime distributions presented by Cancho et al. (2011) (Poisson–exponential
distribution) and Louzada-Neto et al. (2011) (complementary exponential–geometric distribution). This class also includes
the two new mixtures of GE with logarithmic distribution (GEL) and Binomial distribution (GEB).

Remark 1. Let X(1) = min1≤i≤N Xi, then the cdf of X(1) is

FX(1)(x) = 1 −
C (θ − θG(x))

C(θ)
= 1 −

C

θ − θ


1 − e−βx

α
C(θ)

.

If α = 1, then the cdf of X(1) is FX(1)(x) = 1 −
C(e−βx)

C(θ) , which is called exponential–power series distributions (Chahkandi
and Ganjali, 2009) and this family includes the lifetime distributions presented by Adamidis and Loukas (1998), Kus (2007),
and Tahmasbi and Rezaei (2008).

Remark 2. Let X has FX(1)(x) distribution. Then Y = G−1 (1 − G(X)) has GEPS distributions, where G−1 is the inverse
function of G, because
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