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a b s t r a c t

This paper considers model-based methods for estimation of the adjusted attributable risk
(AR) in both case-control and cohort studies. An earlier review discussed approaches for
both types of studies, using the standard logistic regressionmodel for case-control studies,
and for cohort studies proposing the equivalent Poisson model in order to account for
the additional variability in estimating the distribution of exposures and covariates from
the data. In this paper, we revisit case-control studies, arguing for the equivalent Poisson
model in this case as well. Using the delta method with the Poisson model, we provide
general expressions for the asymptotic variance of the AR for both types of studies. This
includes the generalized AR, which extends the original idea of attributable risk to the
case where the exposure is not completely eliminated. These variance expressions can
be easily programmed in any statistical package that includes Poisson regression and has
capabilities for simple matrix algebra. In addition, we discuss computation of standard
errors and confidence limits using bootstrap resampling. For cohort studies, use of the
bootstrap allows binary regression models with link functions other than the logit.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The attributable risk (AR) represents the relative amount by which the prevalence of a disease D would be reduced if
an exposure E was eliminated, taking account of both the relative risk and the prevalence of the exposure. As noted by
a reviewer, the data on which an estimate is based must be representative of the population to which the results will be
applied. A refinement of the basic definition is to adjust for the effects of covariates. Adjustment is based on the prevalence of
disease in a population as a function of a risk factor E with I , usually ordered, levels (with reference level E = 1 representing
no exposure) and a set of categorical covariates xj (1 ≤ j ≤ J), which typically represent a compound index generated by
the combined levels of two or more factors (Benichou, 2001). The adjusted AR is defined as follows (Basu and Landis, 1995;
Eide and Gefeller, 1995; Lehnert-Batar et al., 2006).

AR = 1 − Pr(D|E = 1)/Pr(D) = 1 −

J
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Pr(xj)Pr(D|E = 1, xj)/Pr(D)

=
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Pr(E = i, xj,D) −


j

Pr(xj)Pr(D|E = 1, xj)

 
Pr(D)

=
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i>1

Pr(E = i, xj)

Pr(D|E = i, xj) − Pr(D|E = 1, xj)

 
Pr(D). (1)
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The final expression in (1) is used to define the AR for the jth level of the covariates or, reversing the order of summation,
the ith level of exposure (i > 1). Eide and Gefeller (1995) and Eide and Heuch (2006) refer to the latter as components of
the AR due to a particular level of exposure and note that these components sum to the total AR.

We consider model-based approaches for estimation of the adjusted attributable risk. Model-based methods use a
regression model to estimate the probabilities in Eq. (1). For both cohort and case-control studies the standard approach is
based on a logistic regressionmodel for disease status as a function of exposure and covariates. For cohort studies Cox (2006)
previously proposed the loglinear model equivalent to the standard logistic regression model for the case of cross-sectional
sampling, in order to account for the additional variability in estimating the joint distribution of exposure and covariates
(Basu and Landis, 1995). The Poisson regression model can also be used for stratified cohort studies when additional data
are available to estimate the exposure distribution.

The adjusted AR (1) is based on a comparison of disease risk among exposed individuals to that in the unexposed
(E = 1) population. A generalization (Drescher and Becher, 1997; Eide and Heuch, 2001, and references therein) is to allow
comparison to a population in which the exposure is not entirely absent (present only at the lowest level), but rather has
a nondegenerate distribution, which is different from that in the original population. An example is when the exposure
is reduced but not eliminated as the result of an intervention or education program. The definition of the generalized
attributable risk (generalized impact fraction) given by Drescher and Becher (1997) for such an alternative distribution,
Pr∗(E = i, xj), can be written as follows.

gAR =


j


i


Pr(E = i, xj) Pr(D|E = i, xj) − Pr∗(E = i, xj) Pr(D|E = i, xj)

 
Pr(D). (2)

Although defined inmore general terms, the alternative distributionwould typically involve only the levels of the risk factor.
For each value of the covariates it is defined as a re-weighting of the original exposure probabilities by a specified probability
density function g(i|k) (1 ≤ i ≤ I), defined for each level of exposure, k (1 ≤ k ≤ I).

Pr∗(E = i, xj) =


k

g(i|k) Pr(E = k, xj). (3)

This definition has the intuitively appealing property that Pr∗(xj) = Pr(xj); the special case of the standard AR corresponds
to g(1|k) = 1. To illustrate this idea we will use an example considered by Drescher and Becher (1997). In this case I = 4,
and we assume that a proportion q1 (0 < q1 < 1) of subjects change to the lowest risk level, while an additional proportion
q2 (0 < q1 ≤ q1 + q2 ≤ 1) change from the current level to the next lower level, with subjects already at the lowest level
of risk remaining where they are. The two-parameter family of density functions specified in (3) is given in the following
table, which we will use to illustrate the generalized AR.

g(i|k) k
i

1 2 3 4

1 1 q1 + q2 q1 q1
2 0 1−(q1+q2) q2 0
3 0 0 1−(q1+q2) q2
4 0 0 0 1− (q1 + q2)

In this paper we consider both cohort and case-control studies. For cohort studies we employ the Poisson regression
model. As is standard practice the parameters of the model are estimated by the method of maximum likelihood. For this
model we first provide expressions for the large sample variance of the model-based AR for cohort studies, using the delta
method (Cox, 1998), which is the standard method for finding asymptotic variances for functions of the original parameters
of the model estimated bymaximum likelihood. These expressions can be easily programmed in statistical packages having
matrix capabilities, such as R.

For case-control studies we propose the equivalent loglinear model as well, again in order to account for estimation
of the distribution of exposure and covariates. Expressions for the variance of the adjusted AR based the loglinear model
and the delta method are provided. We include a discussion of the generalized AR for both types of studies. We also
consider bootstrap methods for computing standard errors and confidence intervals. An advantage of the bootstrap is that
for cohort studies, link functions other than the logit can be employed in the binary regression model, and we provide an
illustration using a discrete survival model. The approach is not difficult to implement in packages that facilitate resampling
methods.

The delta method requires expressions for the partial derivatives of various nonlinear functions of the parameters.
There are many ways to write the required vectors of partial derivatives; in addition to ordinary matrix multiplication, we
use the Schur product (element-wise multiplication) to simplify the notation. This requires either that both dimensions
of the two matrix operands are identical, or that one of the two matrices is a vector whose length equals one of the
two dimensions of the other. We will denote this operation with an asterisk; a simple relation that is used repeatedly is
(a ∗ b)′c = b′(c ∗ a) =


aibici for threem-vectors a, b and c .
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