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a b s t r a c t

This paper proposes a generalized random coefficient structural equation model for
analyzing longitudinal data by incorporating the correlated structure due to adjacent
time effects and by allowing structural parameters to vary across individuals. The
coregionalization for modeling multivariate spatial data is adopted to formulate the
correlated structure between adjacent time points. A Bayesian approach coupled with the
Gibbs sampler and the Metropolis–Hastings algorithm is developed to obtain the Bayesian
estimates of unknown parameters and latent variables simultaneously. A simulation study
and a real example related to an emotion study are presented to illustrate the newly
developed methodology.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Latent variables that cannot be directly measured by a single variable are common in practical research. Structural
equation modeling is a very popular multivariate method that has been widely used to assess regression-type relationships
among latent variables. In general, structural equation models (SEMs) combine the idea of factor analysis and regression
through two of its components. The first component is a confirmatory factor analysis model for measuring the latent
variables via several response variables with the measurement errors being taken into account. The second component is a
regression-type structural equation for assessing the effects of explanatory latent variables on the outcome latent variables
of interest. Through the usage of some software (LISREL, EQS), SEMs have been widely applied to behavioral, social, and
biomedical sciences (Bollen, 1989; Jöreskog and Sörbom, 1996; Bentler and Wu, 2002; Sanchez et al., 2005; Lee, 2007).

One of our objectives is to establish a novel SEM for analyzingmultivariate response variablesmeasured at a large number
of time points. Let yij be a p × 1 random vector that represents response variables of the ith individual (i = 1, . . . , I)
measured at time j (j = 1, . . . , Ti). In many longitudinal datasets, for instance those related to finance andmedical research,
characteristics of an individual (e.g. a stock or a patient) at time j are highly correlatedwith those at times j−l or j+lwhen l is
small (e.g. l = 1 or 2), but slightly correlated with those at times j− l or j+ lwhen l is large. Hence, in model building, there
is a need to incorporate a component that considers this kind of correlation structures induced by adjacent time effects.
For large p and Ti, the dimension of this correlation matrix can be very high. Inspired by the spirit of SEM to express the
p × 1 vector of response variables through a smaller number of latent variables, we model the correlation structure due to
adjacent time effects by introducing a linear model of coregionalization to the latent variables in structural equation.
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Conventional analysis of the latent variable assumes a common model for all individuals and ignore the influence of
possible unobserved heterogeneity. This may result in biased parameter estimates and misleading inference (see Ansari
et al., 2002, and references therein). To account for unobserved heterogeneity, theoretically one can formulate a SEM with
an unknown parameter vector at each individual for assessing the changes of parameters with respect to individual. As
the whole model will consist of many SEMs that may differ across individuals, the total number of parameters can become
very large when sample size increases. This problem is more serious when the correlation structure due to time effects is
incorporated in themodel. Hence, in ourmodel building, a commonmeasurement equation is formulated for all individuals,
that is the number of factors, the loadingmatrix, and other associated parameters in themeasurement equation are invariant
for all individuals. In formulating the crucial structural equation, we consider random coefficients in order to capture
how regression coefficients vary across different individuals. Here, random coefficients are used to reveal the structural
heterogeneity among individuals. These random coefficients can also be used to explain that the importance of latent
and observed explanatory variables considered in structural equation models vary across individuals. Finally, nonignorable
missing data are accommodated in the proposed SEM to deal with the frequent occurrence of missing data in longitudinal
studies.

Although some latent variable models or specific SEMs have been developed to analyze longitudinal data, their
objectives and/or formulations are quite different from the proposed model. For instance, longitudinal models in the
statistical literature, such as the linear mixed model (Verbeke and Molenbergh, 2000), the generalized linear mixed model
(Diggle et al., 2002), and the dynamic latent variable model (Dunson, 2003), involve neither a structural equation with
explanatory latent variables, nor the correlation structure due to adjacent time effects. Song et al. (2008) recently proposed
a two-level longitudinal SEM for assessing various model characteristics that dynamically change over time. Again, their
model did not consider the correlation structure due to adjacent time effects, and the regression coefficients in their
structural equation were not random.

The paper is organized as follows. We describe a generalized random coefficient SEM for longitudinal data with adjacent
time effects in Section 2. In Section 3, a Bayesian approach compiled with Markov Chain Monte Carlo (MCMC) methods is
developed. To demonstrate the newly developed methodology, results obtained from a simulation study and an analysis of
a real dataset are presented in Section 4. A discussion is given in Section 5. Technical details are provided in Appendices A
and B.

2. Model specification

Let yijk be the kth (k = 1, . . . , p) component of yij observed at time j (j = 1, . . . , Ti) of the ith (i = 1, . . . , I) individual.We
assume that given ωij, yijk are conditionally independent and come from the exponential family with a canonical parameter
ϑijk and a mean that is a function of the vector of latent variables ωij. That is, yijk have probability density function:

p(yijk|ωij) = exp

{yijkϑijk − b(ϑijk)}/ψk + c(yijk, ψk)


with E(yijk|ωij) = ḃ(ϑijk) and Var(yijk|ωij) = ψkb̈(ϑijk), where b(·) and c(·) are specific known differentiable functions. As the
exponential family distribution includes a lot of distributions, such as binomial, Poisson, normal, and gamma, as its special
cases,we allowdifferent kinds ofmanifest variables in the analysis. Following Lee and Tang (2006),we consider the following
measurement equation to identify the latent variables in ωij via the manifest variables (indicators) in yij = (yij1, . . . , yijp)T :

g(ϑijk) = µk + 3T
kωij, (1)

where µk is an intercept, and 3k is a q × 1 vector of loading factors. Let ωij = (ηT
ij, ξ

T
ij)

T be a partition of ωij into outcome
latent variables in ηij (q1 × 1) and explanatory latent variables in ξij (q2 × 1), q1 + q2 = q. The following structural equation
is used to model the relationship between ηij and ξij:

ηij = 5iηij + Bixij + 0iG(ξij)+ δij, (2)

where xij is an s × 1 vector of covariates; G(ξij) = (g1(ξij), . . . , gt(ξij))
T is a t × 1 nonzero vector-valued function with

differential functions g1, . . . , gt and t ≥ q2; 5i (q1 × q1), Bi (q1 × s), and 0i (q1 × t) are structural coefficient matrices
denoting the effect of ηij, xij, and ξij on ηij, respectively; δij (q1 × 1) is a vector of residuals, and it is assumed that ξij and δij
are independent. The covariates xij can be explanatory variables or other variables that are significant to explain ηij.

Unlike conventional SEMs, here we allow structural coefficients πi = (5i, Bi,0i) to vary across individuals. To account
for structural heterogeneity, we model structural parameters in πi via the following equation:

πi = ziβ + Uivi, (3)

where zi is a q1 × κ matrix of individual-level covariates that are useful in explaining πi, β is a κ × (q1 + s + t) regression
coefficients, Ui is a q1 × 1 indicator vector of 0’s and 1’s, vi = (vi1, . . . , vi,q1+s+t) is a 1 × (q1 + s + t) random vector that
is independent of δij and ξij. Here we assume that vi is distributed as N(0,ϒ), where ϒ is a (q1 + s + t) × (q1 + s + t)
covariance matrix that represents the covariation of the structural parameters resulting from unobserved individual-level
variables. The linear mixed effect model (3) includes both fixed effect β and random effect vi, in which the fixed effect β
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