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a b s t r a c t

This paper studies generalized linear mixed models (GLMMs) with two components of
dispersion. The frequentist analysis of linear mixed model (LMM), and particularly of
GLMM, is computationally difficult. On the other hand, the advent of the Markov chain
Monte Carlo algorithmhasmade the Bayesian analysis of LMMandGLMMcomputationally
convenient. The recent introduction of the method of data cloning has made frequentist
analysis of mixed models also equally computationally convenient. We use data cloning
to conduct frequentist analysis of GLMMs with two components of dispersion based on
maximum likelihood estimation (MLE). The resultant estimators of the model parameters
are efficient. We discuss the performance of the MLE using the well known salamander
mating data, and also through simulation studies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993) are obtained from generalized linear models
(GLMs) (McCullagh and Nelder, 1989) by incorporating random effects into the linear predictors, and include the well-
known linear mixed models (LMMs) for normal responses (Laird and Ware, 1982) as a special case. These models are
useful for modeling the dependence among response variables inherent in longitudinal or repeated measures studies,
for accommodating overdispersion among binomial or Poisson responses, and for producing shrinkage estimators in
multiparameter problems, such as the construction of maps of small area disease rates (Breslow and Clayton, 1993; Rao,
2003).

One of the early applications of GLMMs was made by McCullagh and Nelder (1989, Section 14.5) to a salamander mating
dataset with two components of dispersion, and for other applications of GLMMs, see, for example, Breslow and Clayton
(1993), Lee and Nelder (1996), McCulloch (1997) and Malec and Sedransk (1997). A major difficulty in making inferences
about GLMMs has been computational. In particular, obtaining consistent and efficient estimators for the regression and
the variance components in GLMMs has been proven to be difficult. To overcome numerical difficulties, many authors have
approximated theGLMMs tomake inference. For instance, BreslowandClayton (1993) proposed an approximation approach
called penalized quasi likelihood (PQL) which may or may not yield a consistent estimator for the variance components,
depending on the cluster size and the associated design matrix. Kuk (1995), Breslow and Lin (1995) and Lin and Breslow
(1996), among others, provided certain asymptotic bias corrections both for the regression and the variance component
estimates. Jiang (1998) proposed a simulated-moment approach that always yields consistent estimators for the parameters
of the mixed model, however, the moment (MOM) estimators may be inefficient.

In many practical applications such as biological and/or biomedical studies, one may encounter discrete or continuous
data with two-way correlations caused by two sources of random variation. For instance, McCullagh and Nelder (1989)
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reported an interesting and particularly challenging dataset on salamander mating. The dataset is challenging because
the response variable for this experiment is binary and the study design is crossed rather than nested. This makes the
marginal likelihood particularly difficult to evaluate. This type of correlated data has been analyzed by many authors such
as Breslow and Clayton (1993), Jiang (1998), Booth and Hobert (1999), Jiang and Zhang (2001) and Sutradhar and Rao
(2003) in the frequentist set up. Breslow and Clayton (1993) used a PQL approach, Jiang (1998) used a simulated-moment
approach, Booth and Hobert (1999) used a Monte Carlo EM algorithm (MCEM), and Jiang and Zhang (2001) used two-step
estimating equations approach. Sutradhar and Rao (2003) used a quasi-likelihood (QL) approach analogous to two-way
ANOVA to analyze such two-way correlated cluster data. It is shown that the QL approach yields consistent estimators for
the parameters of the GLMMs with two components of dispersion, and also efficient estimators for the parameters of the
GLMMswith a single component of dispersion. In this paper,we introduce away to computemaximum likelihood estimation
(MLE) to analyze such two-way correlated cluster data. It is shown that the resulting estimators are efficient.

The proposed approach to compute MLE is based on a recently introduced method called data cloning (DC) (Lele et al.,
2007, 2010) for general hierarchical models. The DC is based on Bayesian ideas and uses Markov chain Monte Carlo (MCMC)
methodology. Similar to the Bayesian approach, DC avoids high dimensional numerical integration and requires neither
maximization nor differentiation of a function. Because these estimators are maximum likelihood (ML) estimators, unlike
the Bayesian estimators, they are independent of the choice of priors, non-estimable parameters are flagged automatically
and the possibility of improper posterior distribution is completely avoided.

The paper is organized as follows. In Section 2, the GLMMwith two components of dispersion is described. Data cloning is
then introduced to estimate the model parameters such as the regression effects and two variance components (Section 3).
In Section 4, we apply the MLE approach (via DC) to reanalyze the salamander mating data. We then conduct simulation
studies to examine the performance of the MLE approach in estimating regression parameters and variance components of
the mixed models (Section 5). Concluding remarks are provided in Section 6.

2. GLMMwith two components of dispersion

Let yij be the variable of interest for the ith level of a factor A and the jth level of a factor B (i = 1, . . . ,m; j = 1, . . . , n).
The yij are assumed to be conditionally independent with exponential family p.d.f.

f (yij|θij, φij) = exp{(yijθij − a(θij))/φij + c(yij, φij)}, (1)

(i = 1, . . . ,m; j = 1, . . . , n). The density (1) is parameterized with respect to the canonical parameters θij, known scale
parameters φij and functions a(·) and c(·). The exponential family (1) covers well-known distributions including normal,
binomial and Poisson distributions. The natural parameters θij are then modeled as

θij = x′

ijβ + ui + vj (i = 1, . . . ,m; j = 1, . . . , n), (2)

where xij(p×1) are known design vectors,β(p×1) is an unknown vector regression coefficient, and ui and vj are the random

effects. It is assumed that ui
i.i.d.
∼ N(0, σ 2

u ) and vj
i.i.d.
∼ N(0, σ 2

v ). The model (1)–(2) which involves the regression coefficients
β and two variance components σ 2

u and σ 2
v is refereed to as a GLMMwith two variance components. It is of interest to obtain

efficient estimates of the model parameters.
Note that the observations in model (1)–(2) are correlated in two ways. More precisely, at the ith level of factor A, yij and

yik are independent conditional on ui, while they are unconditionally correlated. Similarly, at the jth level of factor B, yij and
yrj are independent conditional on vj, while they are unconditionally correlated.

3. Inference using data cloning

Let y = (y11, . . . , y1n, . . . , ym1, . . . , ymn)
′ be the observed data vector and, conditionally on the random effects,

b = (u1, . . . , um, v1, . . . , vn)
′, assume that the elements of y are independent and drawn from a distribution in exponential

family with parameters α1. It is also assumed that distribution for b depends on parameters α2. The goal of the analysis is
to estimate the model parameters α = (α1, α2)

′ and predict the random effects b.
To illustrate the DC approach, we start with the standard Bayesian approach to inference for hierarchical models. Denote

L(α; y) as the likelihood of α given data y and π(α) as prior distribution on the parameter space. The posterior distribution
π(α|y) is given by

π(α|y) =
L(α; y)π(α)

C(y)
, (3)

where C(y) =

L(α; y)π(α)dα is the normalizing constant. There are computational toolsMCMC algorithms, that facilitate

generation of random variates from the posterior distribution π(α|y) without computing the integrals in the numerator or
the denominator of (3) (Gilks et al., 1996; Spiegelhalter et al., 2004).
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