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a b s t r a c t

When estimating model parameters from survey data, two sources of variability should
normally be taken into account for inference purposes: the model that is assumed to
have generated data of the finite population, and the sampling design. If the overall
sampling fraction is negligible, the model variability can in principle be ignored and
bootstrap techniques that track only the sampling design variability can be used. They
are typically implemented by producing design bootstrap weights, often assuming that
primary sampling units are selected with replacement. The model variability is often
neglected in practice, but this simplification is not always appropriate. Indeed, we provide
simulation results for stratified simple random sampling showing that the use of design
bootstrapweightsmay lead to substantial underestimation of the total variance, evenwhen
finite population corrections are ignored.We propose a generalized bootstrapmethod that
corrects this deficiency through a simple adjustment of design bootstrap weights that
accounts for the model variability. We focus on models in which the observations are
assumed to be mutually independent but we do not require the validity of any assumption
about their model variance. The improved performance of our proposed generalized
bootstrap weights over design bootstrap weights is illustrated by means of a simulation
study. Our methodology is also applied to data from the Aboriginal Children Survey
conducted by Statistics Canada.

Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

It has long been the tradition for national statistical agencies to design surveys mostly for the estimation of descriptive
parameters of a finite population of interest. In this context, inference is typically made with respect to the sampling
design; i.e., the variability of estimators is due to the selection of a sample from the finite population. However, there is
now a growing interest from the user community in producing more sophisticated analyses of the collected survey data.
Survey analysts are often interested in studying complex relationships between survey variables by postulating models.
The parameters to be estimated are no longer descriptive parameters, but model parameters, sometimes called analytical
parameters.

If sampling is informative, it is well known that classical model-based procedures that ignore sampling design features
may lead to inconsistent estimators of model parameters and invalid inferences. One possible approach to dealing with
informative sampling, and by far the most commonly used in practice, is to weight the sample estimating equations by the
inverse of selection probabilities, or by some other survey weights that account for the sampling design such as calibration
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weights. With this approach, two sources of variability should normally be taken into account for inference purposes: the
model that is assumed to have generated the finite population data and the sampling design (e.g. Pfeffermann, 1993; Binder
and Roberts, 2003; Rubin-Bleuer and Schiopu-Kratina, 2005; Demnati and Rao, 2010). These authors showed that, if the
overall sampling fraction is negligible, the model variability can be ignored, which simplifies variance estimation. However,
there are many practical cases in which this simplification is not appropriate (see Graubard and Korn, 2002) and both
sources of variability must be taken into account. Note that when we refer to model variability we mean the variability
in the observed data which is caused by the underlying statistical model, not a change in the model used to describe the
data.

The bootstrap is an attractive variance estimation method for survey analysts, especially when a proper set of bootstrap
weights accompanies the survey data file. It is often used at Statistics Canada for social surveys. There exists a number of
methods for generating design bootstrap weights that track the sampling design variability (e.g., Rao and Wu, 1988; Rao
et al., 1992; Sitter, 1992; or Beaumont and Patak, 2012). If the overall sampling fraction is negligible, so that the model
variability can be ignored, the design bootstrap weights can be used to obtain valid variance estimates, confidence intervals
or hypotheses tests (Beaumont and Bocci, 2009). If themodel variability cannot be ignored, thesemethods need refinements.
Such refinements have not yet appeared in the literature.We have thus developed a generalized bootstrapmethodology that
consists of adjusting design bootstrap weights so as to account for the model variability.

We give some background on survey sampling in Section 2. In Section 3, we present our bootstrap variance estimation
method for survey data.We also briefly discuss the special case of a census. Our proposedmethod is evaluated in a simulation
study for stratified simple random sampling. Results are presented in Section 4. We compare our method to the strategy of
generating design bootstrap weights under the assumption that sampling units have been selected with replacement. This
ad hoc strategy is often suggested and used in practice in the absence of a suitable alternative. We have also applied our
technique to data from the Aboriginal Children Survey conducted by Statistics Canada. Results are presented in Section 5.
We briefly conclude in the last section.

2. Background and notation

2.1. Model parameters and finite population parameters

When making inferences from survey data, survey analysts often assume that data of the finite population U of size N
are generated according to a model and they are interested in drawing conclusions about a vector β of unknown model
parameters. A typical model describes the conditional distribution F(yU | XU ; β, θ), where the N-vector yU contains the
population values of a dependent variable y, XU is an N-row matrix that contains the population values of a vector of
independent variables x and θ is a potential vector of additional unknown model parameters that are not of interest. We
assume that yi, i ∈ U , aremutually independent conditional onXU . This set-up covers linear and logistic regression as special
cases, two models often used for survey data.

We denote by βU the population parameter that would be used to estimate β if a census were conducted and we assume
that it is implicitly defined by some estimating equation

SU(βU) =


i∈U

Si(βU ; yi, xi) = 0, (2.1)

where the function Si(βU ; yi, xi) is such that SU(βU) = 0 is an unbiased estimating equation for β; that is, Em {Si(β; yi, xi)} =

0 and thus Em {SU(β)} = 0. The subscript m indicates that the expectation is evaluated with respect to the model; i.e., with
respect to the distribution F(yU | XU ; β, θ). For instance, if the linear model Em(yi) = x′

iβ is considered then a possible
unbiased estimating function is Si(β; yi, xi) = (yi − x′

iβ)xi. For simplicity, we will use from now on the notation Si(·)
instead of Si(·; yi, xi).

2.2. Survey-weighted estimators

A sample s of size n is selected from the finite population U according to a probability sampling design p(s); thus, βU
cannot be computed directly. An estimator βs of β is usually obtained by considering the following weighted estimating
equation (e.g. Binder, 1983; Rao et al., 2002; Demnati and Rao, 2010):

S(βs) =


i∈s

wiSi(βs) = 0, (2.2)

where wi = 1/πi is the survey weight of unit i and πi is the probability that unit i is selected in the sample. This choice
of survey weight ensures that Ep


i∈s wiSi(β̃)


=


i∈U Si(β̃), for any fixed vector β̃; the subscript p indicates that the
expectation is evaluated with respect to the sampling design. As a result, Emp {S(β)} = 0, so that (2.2) is an unbiased
estimating equation for β. Note that the expectation is now taken with respect to the joint distribution induced by the
model and the sampling design.
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