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a b s t r a c t

Quantile regression has emerged as one of the standard tools for regression analysis that
enables a proper assessment of the complete conditional distribution of responses even
in the presence of heteroscedastic errors. Quantile regression estimates are obtained by
minimising an asymmetrically weighted sum of absolute deviations from the regression
line, a decision theoretic formulation of the estimation problem that avoids a full
specification of the error term distribution. Recent advances in mean regression have
concentrated on making the regression structure more flexible by including nonlinear
effects of continuous covariates, random effects or spatial effects. These extensions often
rely on penalised least squares or penalised likelihood estimation with quadratic penalties
and may therefore be difficult to combine with the linear programming approaches often
considered in quantile regression. As a consequence, geoadditive expectile regression
based on minimising an asymmetrically weighted sum of squared residuals is introduced.
Different estimation procedures are presented including least asymmetrically weighted
squares, boosting and restricted expectile regression. The properties of these procedures
are investigated in a simulation study and an analysis on rental fees in Munich is provided
where the geoadditive specification allows for an analysis of nonlinear effects of the size of
flats or the year of construction and the spatial distribution of rents simultaneously.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

To obtain a complete picture of the dependence of a response on covariate information, a singlemean regression analysis
is often not sufficient. This is most easily seen for heterogeneous data where the impact of covariates on the mean is
different from the impact on the variability or more generally the tails of the distribution of the response. As a consequence,
quantile regression (Koenker, 2005) is nowadays routinely applied to regression data since quantile regression results for
a dense set of quantiles allow for an analysis of the complete conditional distribution of the response. In this paper, we
consider expectile regression (Schnabel and Eilers, 2009) as an alternative possibility for characterising the conditional
distribution.

Let Z be a continuous random variable with density fZ (z). Then the τ -quantile qτ , τ ∈ (0, 1), is defined implicitly by the
equation

τ = P(Z ≤ qτ ) =

 qτ

−∞
fZ (z)dz

∞

−∞
fZ (z)dz

but can also be derived from the minimisation problem

qτ = arg min
q

E (wτ (Z)|Z − q|)
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with weights

wτ (Z) =


τ if Z ≥ q
1 − τ if Z < q.

While the implicit definition characterises the quantile as the partial integral of the density, the minimisation problem
describes the quantile as the minimiser of a weighted least absolute expectation problem. Expectiles eτ , τ ∈ (0, 1), are now
obtained by replacing the partially integrated density with the partial moment function G, yielding

τ =

 eτ
−∞

|z − eτ |fZ (z)dz
∞

−∞
|z − eτ |fZ (z)dz

=
G(eτ ) − eτ F(eτ )

2(G(eτ ) − eτ F(eτ )) + (eτ − µ)
(1)

where G(e) =
 e
−∞

zfZ (z)dz and G(∞) = µ is the expectation of Z . Again, this implicit definition can be re-expressed as a
minimisation problem but with absolute deviations replaced by squared deviations, i.e.

eτ = arg min
e

E

wτ (Z)|Z − e|2


.

These derivations indicate that expectiles are an alternative possibility for characterising the distribution of a random
variable. In fact, the expectile function uniquely determines the distribution of Z .

To include expectiles in regression models, we start with the basic regression specification

yi = ητ i + ετ i, i = 1, . . . , n,

with continuous responses yi, independent errors ετ i and a predictor ητ i depending on an asymmetry parameter τ ∈ (0, 1)
that defines the tail area of the response distribution that will be analysed. Instead of assuming E(ετ i) = 0 as in mean
regression or P(ετ i ≤ 0) = τ as in quantile regression, we then assume

0 = arg min
e

E

wτ (ετ i)|ετ i − e|2


which ensures that the predictorητ i equals the τ -expectile of response yi. Estimation of the regression effects in the predictor
ητ i is then achieved by minimising the sum of asymmetrically weighted squared deviations

ρ(ητ ) =

n
i=1

wτ (yi)(yi − ητ i)
2. (2)

Note that the expectile regression specification is semiparametric like usual quantile regression models, since apart from
independence of the errors and the condition on the expectiles, no further assumptions on the error terms are included. In
particular, errors are allowed to be heteroscedastic and they may follow different types of distribution.

Themain advantage of expectiles over quantiles is that the criterion (2) is differentiablewith respect to regression effects.
Thiswill allow us to derive a simple iterativelyweighted least squares procedure for estimating expectile-specific regression
coefficients which is of particular value in complex regression specifications including nonlinear, random or spatial effects.
These extended modelling components usually rely on quadratic penalties which do not immediately fit into the linear
programming framework considered for quantile regression. Moreover, expectiles contain the expectation as a special case
(with τ = 0.5) such thatmean regression is a special case of expectile regression. This also indicates that expectile regression
is closer to the concept of explained variance in least squares estimation and expectile-specific parameters canbe interpreted
with respect to variance heteroscedasticity.

It has also been claimed that expectiles make more efficient use of the available data as compared to quantiles (Newey
and Powell, 1987) since they rely on the distance of observations from the regression predictor while quantiles only use
the information on whether an observation is above or below the predictor. Of course, this advantage comes at the price of
increased outlier sensitivity. Finally, expectile regression provides a smooth family of functions. While quantile regression
lines have to go exactly through p points when p is the number of regression coefficients, expectile regression does not have
such a restriction.

In the application on the Munich rental guide that will be described in more detail in Section 4, we aim at analysing the
impact of covariates on the net rent per square meter in a geoadditive regression model like

rent = x′β + f1(year) + f2(size) + fspat(district) + ε

where f1 and f2 are nonlinear functions of the year of construction and the size of the flat, fspat is a spatial function defined on
the roughly 400 districts within Munich and x′β captures further regression effects of categorical covariates describing, for
example, special kitchen equipment, the location of the flat in the building, etc. Such geoadditive regression specifications
have gained considerable attention in mean regression; see Kamman and Wand (2003) which coined the term geoadditive
regression, Fahrmeir et al. (2004) or Ruppert et al. (2003, 2009). Additive models have also been introduced to quantile
regression based on for example variational regularisation approaches (Koenker et al., 1994), and boosting for empirical
risk minimisation (Fenske et al., 2009) and in a Bayesian framework (Yue and Rue, 2011). Quantile regression has also been
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