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a b s t r a c t

In clustering applications, prior knowledge about cluster membership is sometimes
available. To integrate such auxiliary information, constraint-based (or semi-supervised)
methods have been proposed in the hard or fuzzy clustering frameworks. This approach
is extended to evidential clustering, in which the membership of objects to clusters is
described by belief functions. A variant of the Evidential C-means (ECM) algorithm taking
into account pairwise constraints is proposed. These constraints are translated into the
belief function framework and integrated in the cost function. Experiments with synthetic
and real data sets demonstrate the interest of the method. In particular, an application to
medical image segmentation is presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Clustering methods aim at grouping objects into clusters based on similarity between their descriptors. However,
there are some situations in which some background knowledge about the problem is available. Making use of this
extra information in a clustering algorithm can help us guide the method towards a desired solution and to improve the
classification accuracy (Berget et al., 2008; Gordon, 1996). Prior information can be exploited at different levels such as:
the cluster level with, for instance, a minimum distance neighborhood (Davidson and Ravi, 2005), the model level with
the requirement of balanced clusters (Zhong and Ghosh, 2003) or the specification of non desired solutions (Gondek and
Hofmann, 2007), or at the instance level.

Wagstaff et al. (2001) proposed to introduce two types of instance-level constraints: the first one specifies that two
objects have to be in the same cluster (must-link constraint) while the second one specifies that two objects should not be
put in the same cluster (cannot-link constraint). Such pairwise constraints have been considered and integrated in many
unsupervised algorithms such as the hard or the fuzzy c-means (FCM), and have recently become a topic of great interest
(Xing et al., 2002; Basu et al., 2006;Wagstaff, 2007; Davidson and Ravi, 2005). They have been incorporated inmany different
ways, generally by including a penalty term in the objective function (Basu et al., 2004; Grira et al., 2008) or by altering the
distances between objects with respect to the constraints (Xing et al., 2002).

In the FCM algorithm, each object may belong to one or more clusters with different degrees of membership. These
degrees of membership are stored into a fuzzy partition matrix U = (uik) and are calculated by minimizing a suitable
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objective function with respect to the constraints
uik ≥ 0 ∀i, k, (1)

and
c

k=1

uik = 1, (2)

where uik ∈ [0, 1] denotes the degree ofmembership of object i to cluster k, and c is the number of clusters. Nevertheless the
method sometimes produces counterintuitive results and has poor robustness against noise and outliers. This is the reason
why possibilistic methods (Dring et al., 2006; Krishnapuram and Keller, 1993; Davé, 1991) and, more recently, evidential
clusteringmethods grounded in the theory of belief functions (Denœux andMasson, 2004;Masson andDenœux, 2004, 2008,
2009) have been proposed.

Evidential clustering is based on a new concept of partition, referred to as a credal partition, which extends the existing
concepts of hard, fuzzy andpossibilistic partitions. This is done by allocating, for each object, amass of belief, not only to single
clusters, but also to any subset of the set of clusters Ω = {ω1, . . . , ωc}. As shown in the experiments reported in Denœux
andMasson (2004) andMasson and Denœux (2008), this additional flexibility can be exploited to construct meaningful and
robust summaries of the data. For instance, it is possible to compute, for each cluster, a set of objects that surely belong
to it, and a larger set of objects that possibly belong to it. Such qualitative summaries may be argued to be more intuitive
and easier to interpret than purely numerical results such as fuzzy partitions, while being much richer than classical hard
partitions. Robustness is achieved by assigning outliers to the empty set.

One of the algorithms designed to derive a credal partition fromdata, called Evidential C-Means (ECM), can be considered
as a direct extension of FCM (Masson and Denœux, 2008). In this paper, we propose to introduce pairwise constraints in the
ECM algorithm, in order to create a new algorithm, called CECM, which combines the advantages of adding background
knowledge and using belief functions. Furthermore, we present a formulation of ECM that adapts the metric using a
Mahalanobis distance so that the constraints may be more easily satisfied. Finally, we propose an active learning scheme,
based on the credal partition, which makes it possible to select efficient pairwise constraints.

The remainder of this paper is organized as follows. Section 2 first recalls the necessary background on belief functions,
fuzzy clustering and the ECM algorithm. The basic version of the constrained ECM (CECM) algorithm with Euclidean
distance and a more sophisticated version with an adaptive Mahalanobis distance are then introduced in Sections 3 and 4,
respectively. Section 5 describes the experimental settings and the results. Finally, we conclude and present some
perspectives in Section 6.

2. Background

In this section, the necessary background on the theory of belief functions (Section 2.1), fuzzy clustering (Section 2.2)
and the ECM algorithm (Section 2.3) will first be recalled.

2.1. Belief functions

The Dempster–Shafer theory of evidence (Baudrit and Dubois, 2006; Shafer, 1976; Smets and Kennes, 1994) (or the belief
function theory) is a theoretical framework for representing partial and unreliable information.

Let us consider a variable ω taking values in a finite set Ω = {ω1, . . . , ωc} called the frame of discernment. Partial
knowledge regarding the actual value taken by ω can be represented by amass function m, which is an application from the
power set of Ω in the interval [0, 1] such that

A⊆Ω

m(A) = 1. (3)

The subsets A of Ω such thatm(A) > 0 are called the focal sets ofm. The value of the focal setm(A) can be interpreted as
a fraction of a unit mass of belief that is allocated to A and that cannot be allocated to any subset of A. Complete ignorance is
obtainedwhenΩ is the only focal set, and full certaintywhen thewholemass of belief is assigned to a unique singleton ofΩ
(m is then said to be a certainmass function). If all the focal sets ofm are singletons,m is similar to a probability distribution:
it is then called a Bayesian mass function. A mass function m such that m(∅) = 0 is said to be normalized. Under the open-
world assumption, a mass function m(∅) > 0 is interpreted as a quantity of belief given to the hypothesis that the actual
value of ω might not belong to Ω (Smets, 1998).

Given a mass functionm, it is possible to define a plausibility function pl : 2Ω
→ [0, 1] and a belief function bel : 2Ω

→

[0, 1] by:

pl(A) =


B∩A≠∅

m(B) ∀A ⊆ Ω, (4)

and

bel(A) =


B⊆A,B≠∅

m(B) ∀A ⊆ Ω. (5)
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