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a b s t r a c t

In this study, a generalizedmethod ofmoments (GMM) for the estimation of nonstationary
vector autoregressive models with cointegration is considered. Two iterative methods are
considered: a simultaneous estimation method and a switching estimation method. The
asymptotic properties of the GMM estimators of these methods are found to be the same
as those of the Gaussian reduced-rank estimator. Through Monte Carlo simulation, the
small-sample properties of the GMM estimators are studied and compared with those of
the Gaussian reduced-rank estimator and the maximum likelihood estimator considered
by other researchers. In the case of small samples, the GMM estimators are more robust to
deviations from normality assumptions, particularly to outliers.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The generalized method of moments (GMM) is an estimation method that helps avoid strong parametric assumptions
in data analysis. After the introduction of the GMM in Hansen (1982), variants of the GMM have been used to analyze
economic models in numerous fields, including finance and macroeconomics. The distributional properties of financial and
macroeconomic data include skewness and leptokurtosis. Thus, in such cases, the maximum likelihood estimator (MLE),
which is based on a multivariate normality assumption, may no longer have optimal properties, and hence it might provide
misleading results. An advantage of the GMM is that only certainmoment conditions need to be specified for the parameters
to be estimated; information about the innovation distributions and autocorrelation and heteroskedasticity properties are
not required.

Kitamura and Phillips (1997) developed the GMM approach for a nonstationary regression model, while Quintos (1998)
extended their fully modified GMM estimators to the nonstationary regression of cointegration models. However, since
Quintos (1998) was interested only in long-run relations, the effect of lagged response variables was absorbed in the
innovation term. This led to correlation between the innovation term and the regressor, and instrumental variables were
introduced to resolve the correlation issues. Kleibergen (1999) adopted the GMM for a simple vector error correction model
(VECM), in which long-run relations were considered and short-term dynamics were neglected.

In the GMM, parameters are estimated by minimizing the objective function comprising moment conditions. Since
cointegration models have a reduced rank structure among the parameters, a specific identification condition is required to
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identify the cointegrating estimator. Kleibergen (1999) obtained the first-order condition for the object function to estimate
unknown parameters without employing any identification constraint, and subsequently determined the identification
conditions. Consequently, calculations for the estimator became difficult, and the asymptotic distribution for the estimator
was highly complex.

In this study, we assume that the cointegrating rank is known, and on the basis of the standard time series framework by
Kleibergen (1999) we develop two iterative GMM estimation methods: a simultaneous estimation method and a switching
estimation method. The cointegrating rank can be identified using canonical correlations in the early stages of model
building, such as that described in Ahn (1997). Our GMM estimators also induce an orthogonality condition since the
assumption considered in the statistical model or econometric theory is adopted, as in the case of the previous GMM. In the
simultaneous estimation method, the unknown parameters are simultaneously estimated, as in Ahn and Reinsel (1990). In
the switching estimation method, the unknown parameters are divided into two groups. The parameters of the first group,
referred to as nonstationary parameters, are associated with the nonstationary part of the process, that is, the cointegrating
vectors. The parameters of the second group, referred to as stationary parameters, are associated with the stationary part of
the process. Given the second group of parameters, we can estimate the parameters of the first group, and vice versa. Unlike
the estimation method proposed in Kleibergen (1999), our methods give the identification condition for the parameters in
advance; then, the first-order condition of the objective function is obtained. Hence, the proposed methods involve simple
calculations and are more efficient than the method of Kleibergen (1999).

The rest of this paper is organized as follows. In Section 2, we discuss our iterative GMM estimation methods for the
VECM and derive the asymptotic distribution of the GMM estimators. Section 3 shows the extension of the results tomodels
with deterministic components. In Section 4, we present the results of the Monte Carlo experiments performed using the
proposed GMM estimators and the existing MLEs and discuss the extraordinary outlier problem of the MLE on the basis of
the real data example of the German monetary system. Finally, concluding remarks are presented in Section 5. The proofs
of the theorems stated in this paper are presented in the Appendix.

2. Two iterative GMM estimation methods

We consider anm-dimensional vector autoregreesion (VAR) process {yt} given by

Φ(L)yt =


Im −

p−
j=1

ΦjLj

yt = ϵt , (1)

where Φ(L) = Im − Φ1L − · · · − ΦpLp. We assume that the characteristic equation det(Φ(L)) = 0 has d < m unit roots,
with the remaining roots lying outside the unit circle, and that rank(Φ(1)) = r = m − d. Under this assumption, (1 − L)yt
becomes a stationary process. We further assume that {ϵt} is a sequence of independent m-dimensional random vectors
with E(ϵt) = 0, Cov(ϵt) = Ω , and supt E(|ϵj,t |

2+δ) < ∞ for some δ > 0 and j = 1, 2, . . . ,m.
After proper transformation, this cointegrated VAR model takes the form of the VECM; by applying the Lagrange

expansion around the unit root of the polynomial Φ(z), we have the following VECM:

1yt = −Φ(1)yt−1 +

p−1−
j=1

Φ∗

j 1yt−j + ϵt

= αβ ′yt−1 +

p−1−
j=1

Φ∗

j 1yt−j + ϵt , (2)

where Φ(1) = Im −
∑p

j=1 Φj with Φ∗

j = −
∑p

k=j+1 Φk. α and β are full-rank (m × r) matrices such that β ′yt describes the
long-run relationships, α is an adjustment coefficient, and Φ∗

1 , . . . , Φ∗

p−1 represent the short-run dynamics of the process.
Because model (2) considers the long-run relationships and short-run dynamics simultaneously, and the entire information
for the cointegration rank can be obtained from Φ(1), the VECM is widely used for cointegration models.

For a unique identification of the cointegrating vector β , we use the same normalization β ′
= (Ir , β0

′) used by Ahn and
Reinsel (1990), where Ir is the r × r identity matrix, and β0 is an (m− r)× r matrix of unknown parameters. Then, the VECM
can be expressed as

1yt = αy1,t−1 + αβ ′

0y2,t−1 +

p−1−
j=1

Φ∗

j 1yt−j + ϵt ,

where yt−1 = (y ′

1,t−1, y2,t−1
′)′; y1,t−1 is an r × 1 vector and y2,t−1 is an (m − r) × 1 vector. We use the following notation

to obtain the estimators easily and to describe the system in a compact form:

1yt = Πxt−1 + ϵt , (3)
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