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a b s t r a c t

Estimators and tests based on likelihood depth for one-parametric copulas are given. For
the Gaussian and Gumbel copulas, it is shown that the maximum depth estimators are
biased. They can be corrected and the new estimators are robust against contamination.
For testing, simplicial likelihood depth is considered. Because of the bias of the maximum
depth estimator, simplicial likelihood depth is not a degenerated U-statistic so that easily
asymptotic α-level tests can be derived for arbitrary hypotheses. Tests are in particular
investigated for the one-sided alternatives. Simulation studies for theGaussian andGumbel
copulas show that the power of the first test is rather good, but the latter one has to be
improved, which is also done here. The new tests are robust against contamination.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The copula model has a variety of applications because it models dependence structures. For example in finance, in the
analysis of credit risks, the insolvency of several debtors at the same time or for insurances the risk of appearance of different
claims at the same time have to be modeled to insure solvency of the bank and insurance, respectively, all the time. Copulas
can also be used in the simulation of technical production processes to model the occurrence of coupled failures. Some
applications of copulas can be found in Aas (2004), Andersen (2005), Cízek et al. (2005) and Dobrić and Schmid (2005) or
Malvergne and Sornette (2006). For an introduction to copulas, see for example Joe (1997) or Nelsen (2006).

Different estimation procedures for copulas were introduced. Parametric, semi-parametric and nonparametric methods
are proposed. Most of the parametric and semi-parametric methods are two-stage estimations, as presented in Andersen
(2005), Genest et al. (1995) and Hoff (2007) or Kim et al. (2007) for example. Here in most cases as a first step the margins
are estimated by parametric or nonparametric methods, then an estimation procedure for the parameter of the copula is
presented; see also Lawless and Yilmaz (2011). An example for a nonparametric estimation model for the copula is the
empirical copula; see e.g. Capéraà et al. (1997). Goodness-of-fit-tests can be found, for e.g. in Dobrić and Schmid (2005),
Fermian (2005) or Panchenko (2005).

In this work, we derive estimators and tests for one-parametric two-dimensional copulas via likelihood depth and
simplicial likelihood depth. Likelihood depth and simplicial likelihood depth are rather general notions of data depth, and
were first used by Mizera and Müller (2004) and Müller (2005). They extended the half space depth of Tukey (1975) and
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the simplicial depth of Liu (1988, 1990) which led to outlier robust generalizations of the median for multivariate data.
They belong to a broad class of depth notions introduced and studied in the last 20 years, see e.g. Rousseeuw and Hubert
(1999), Zou and Serfling (2000a,b) and Mizera (2002), and the book of Mosler (2002). Although likelihood depth is based on
a parametric approach, it can lead to distribution-free estimators and tests as Mizera and Müller (2004) demonstrated for
location-scale estimation and Müller (2005) for regression. Müller (2005) also showed that simplicial likelihood depth is in
particular appropriate for testing since it is an U-statistic. Thereby rather general hypotheses can be tested and the resulting
tests are outlier robust.

Copulas are often given by distributional assumptions on the form of the copula. These distributional assumptions for the
copulawill be used here to define likelihood depth and simplicial likelihood depth for copulas. The approach is demonstrated
for the Gaussian copula and the Gumbel copula for two dimensions which are based on one parameter only. However, the
approach can also be used for other one-parametric copulas.

In Section 2, the basic concepts of likelihood depth are given and specified for the case of one unknown parameter
θ ∈ Θ ⊂ R. Also themaximum likelihood depth estimator is defined. Under regularity conditions it is a consistent estimator
for the ‘‘deepest point’’ of the population. But the deepest point of Pθ can be different from θ , in this case the maximum
likelihood depth estimator is an asymptotically biased estimator for θ , but a correction of the bias is given. Moreover, the
definitions of Gaussian copula andGumbel copula are given. Section 3 provides themain results for estimating the parameter
θ of a Gaussian copula and Gumbel copula via likelihood depth and simplicial likelihood depth. The resulting estimators are
biased but can be corrected. They are robust against contamination.

Tests for general hypotheses about the parameter θ are derived in Section 4.1 via simplicial likelihood depth. Since the
maximum likelihood depth estimator is biased, simplicial likelihood depth is not a degenerated U-statistic as is the case
for most simplicial depth notions. Hence its asymptotic distribution is simply the normal distribution so that asymptotic
α-level tests can be derived easily. Simulation studies show that these tests have a reasonable power for testing H0 : θ ≤ θ0
for the Gaussian copula and the Gumbel copula. In particular, the test for the Gaussian copula parameter ρ is as powerful
as the classical Fisher–Samiuddin test. But the power is bad for testing H0 : θ ≥ θ0 because of the bias of the underlying
estimator. Therefore an improvement of the tests is proposed which leads to rather powerful tests. All new tests show also
high robustness against contamination.

2. Preliminaries

2.1. Likelihood depth and related estimators

Let Z1, . . . , ZN be i.i.d. with density fθ , θ ∈ Θ ⊂ Rq. The likelihood function at parameter θ and observation zn will be
denoted by L(θ, zn) := fθ (zn). Nowwe are able to define global likelihood depth similar toMizera (2002), Mizera andMüller
(2004) and Müller (2005):

Definition 1. The global likelihood depth of a parameter θ within observations z1, . . . , zN is the minimal number m of
zi1 , . . . , zim , such that θ is a likelihood nonfit within {z1, . . . , zN} \ {zi1 , . . . , zim}, which means, one can find θ ′

≠ θ such that
L(θ ′, zn) > L(θ, zn) for every zn ∈ {z1, . . . , zN} \ {zi1 , . . . , zim}.

In large datasets the calculation of global likelihood depth can be complicated. Mizera (2002) and Mizera and Müller
(2004) defined tangent likelihood depth and Müller (2005) introduced simplicial likelihood depth, which are easier to
handle.

Definition 2.

(i) Tangent likelihood depth of θ within z∗ := (z1, . . . , zN)T is

dT (θ, z∗) :=
1
N

inf
u≠0

♯{n; uTh′

n(θ) ≤ 0}

where hn(θ) := ln(L(θ, zn)) and h′
n(θ) is the vector of the partial derivatives of hn(θ) for θ = (θ1, . . . , θq) (especially

for θ ∈ R, h′
n(θ) =

∂
∂θ

ln fθ (zn)).
(ii) Simplicial likelihood depth of θ within observations z∗ := (z1, . . . , zN)T is defined as

dS(θ, z∗) :=


N

q + 1

−1

· ♯{{n1, . . . , nq+1} ⊂ {1, . . . ,N}; dT (θ, (zn1 , . . . , znq+1)) > 0},

where q is the dimension of θ .
(iii) Themaximum likelihooddepth estimator θ̃N for the parameter θ is the one in the parameter-spaceΘ that hasmaximum

likelihood depth, i.e.

θ̃N(z∗) ∈ argmax
θ∈Θ

dT (θ, z∗).
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