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a b s t r a c t

The recently proposed ‘weighted average least squares’ (WALS) estimator is a Bayesian
combination of frequentist estimators. It has been shown that the WALS estimator
possesses major advantages over standard Bayesian model averaging (BMA) estimators:
the WALS estimator has bounded risk, allows a coherent treatment of ignorance and its
computational effort is negligible. However, the sampling properties of theWALS estimator
as compared to BMA estimators are heretofore unexamined. The WALS theory is further
extended to allow for nonspherical disturbances, and the estimator is illustrated with
data from the Hong Kong real estate market. Monte Carlo evidence shows that the WALS
estimator performs significantly better than standard BMA and pretest alternatives.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In standard econometric practice, regression diagnostics such as the t-ratio are used to select a model, after which the
unknown parameters are estimated in the selected model. These estimates are then presented as if they were unbiased and
the standard errors as if they represented the true standard deviations. This is clearly wrong, even in the unlikely event that
the selected model happens to be the data-generating process.

The traditional role of the t-ratio in model selection is itself suspect. The t-ratio was developed in the context of
hypothesis testing, not in the context of model selection. While it may make good sense to reject a null hypothesis only
when 95% of the evidence is in favor of the alternative, it does not make nearly as good sense to only prefer one model over
another when 95% of the evidence points that way.

Even when we accept the t-ratio as a model selection tool, there is the problem of pretesting. We are ignoring the fact
that model selection and estimation are a combined effort and that the model selection part influences the properties of
our estimators. These properties depend not only on the stochastic nature of our framework, but also on the way the
model has been selected. If we ignore the model selection part, then our reported properties are conditional rather than
unconditional. Focusing on the general-to-specific and specific-to-general model selection procedures, Danilov andMagnus
(2004a) derived the unconditional moments of the least squares pretest estimators, and Danilov and Magnus (2004b)
obtained the corresponding forecast moments. In a series of papers Leeb and Pötscher (2003, 2005, 2006, 2008) also studied
conditional distributions of estimators subsequent to a range of model selection strategies. All these studies conclude that
the problems associated with ignoring model selection can be very serious. For example, Danilov and Magnus (2004a)
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showed that the mean squared error associated with the specific-to-general pretest procedure is unbounded, and that the
errors in not reporting the correct moments can be large.

But even if we could fully understand the properties of the pretest estimator and take them into account, the problem
remains that the pretest estimator itself is a poor estimator. This is primarily because the pretest estimator is ‘kinked’, which
implies that it is inadmissible (Magnus, 2002, Theorem A.6). In addition to this theoretical problem, the pretest estimator
is also uncomfortable intuitively. We may be used to taking one estimator when t = 1.95 and another when t = 1.97, but
it remains difficult to justify. Would it not be more comfortable to abandon this ‘kinked’ estimator and use a ‘continuous’
estimator instead? A ‘continuous’ estimate of a specific parameter would consider the estimates from all models in a certain
model space and then weigh them according to their statistical strengths, possibly in addition to prior information. This is
the idea underlying model averaging.

The aim of model averaging is not to find the best possible model but rather to find the best estimates of the parameters
of interest. Instead of selecting a single ‘winning’ model, we use information from all models, but of course some models
are more reliable than others, based on data and priors. Model uncertainty is then incorporated in the properties of our
estimators in a natural way. Bayesian model averaging (BMA) offers a natural framework (Leamer, 1978) and has been
used widely, especially in growth econometrics. Raftery et al. (1997) and Hoeting et al. (1999) provide useful literature
summaries of BMA. Recent applications of BMA can be found in Peña and Redondas (2006) and Ouysse and Kohn (2010).
There has also been a rising interest inmodel averaging froma frequentist perspective and several frequentistmodel average
estimators have been proposed. For example, Buckland et al. (1997) suggest mixing models based on the AIC or BIC scores
of the competing models; Yang (2001, 2003) propose a frequentist-based adaptive regression mixing method; Hjort and
Claeskens (2003) provide a likelihood-based local misspecification framework for analyzing the asymptotic properties of
model average estimators; Hansen (2007, 2008) andWan et al. (2010) suggest a Mallows criterion for selecting weights in a
model average estimator; and Schomaker et al. (2010) develop frequentist model averaging schemes in the face of missing
observations. The recent monograph by Claeskens and Hjort (2008) covers much of the progress that has been made in this
direction. In addition, subset selection has been proposed in the frequentist model averaging literature, in order to narrow
down the list of candidate models for averaging and thus save computing time; see, for example, Yuan and Yang (2005),
Claeskens et al. (2006) and Buchholz et al. (2008).

Recently, Magnus et al. (2010), hereafter MPP, proposed aweighted average least squares (WALS) estimator based on the
equivalence theorem developed in Magnus and Durbin (1999) and Danilov and Magnus (2004a). The WALS estimator is a
Bayesian combination of frequentist estimators, and it possesses some important advantages over standard BMA techniques.
First, in contrast to standard BMA estimators that adopt normal priors leading to unbounded risk, WALS uses priors from
the Laplace distribution and thus generates bounded risk. Second, the use of Laplace priors implies a coherent treatment of
ignorance. Third, WALS requires a trivial computational effort because computing time is linear in the number of regressors
rather than exponential as in BMA or standard frequentist model averaging.

MPP discuss WALS estimation in the context of growth models, where there is a large number of potentially relevant
explanatory variables, while Wan and Zhang (2009) apply WALS in a tourism study. In both cases the disturbances are
assumed to be identically and independently distributed. This assumption is not realistic in most applications, and one
purpose of the current paper is to develop WALS in the more general framework of nonspherical disturbances. The main
purpose of the paper is to provide Monte Carlo evidence on the performance of WALS in a realistic set-up. In MPP it is
shown that WALS works well, has intuitive appeal, is easy to compute, and produces realistic results, but we do not know
yet whether the estimates are close to the true parameter values, neither do we know whether the standard errors capture
the combined model selection and estimation errors adequately. This can only be found out through simulations and the
current study attempts to provide a representative subset of such simulations.

As our empirical frameworkwe choose a hedonic housing pricemodelwith data fromHong Kong, one of theworld’smost
buoyant real estate markets. There typically exists a wide range of model specifications in hedonic housing price modeling,
and this makes model uncertainty an important and challenging issue. We explore the root mean squared error (RMSE) of
theWALS estimator and contrast this with the RMSE of the BMA estimator and a stepwisefit pretest estimator. We conclude
that the WALS estimator has smaller RMSE than BMA and other model selection alternatives over a large portion of the
parameter space, and is therefore a potentially useful estimator, not only when the number of regressors is large, but in any
linear regression problem.

Our theoretical framework is the linear regression model

y = X1β1 + X2β2 + u = Xβ + u, (1)

where y (n×1) is the vector of observations on the dependent variable, X1 (n×k1) and X2 (n×k2) arematrices of nonrandom
regressors, u is a random vector of unobservable disturbances, and β1 and β2 are unknown parameter vectors. The columns
of X1 are called focus regressors (those we want in the model on theoretical or other grounds), while the columns of X2 are
called auxiliary regressors (those we are less certain of). We assume that k1 ≥ 0, k2 ≥ 0, 1 ≤ k := k1 + k2 ≤ n − 1, and
that X := (X1 : X2) has full column-rank. Model selection takes place over the auxiliary regressors only. Since each of the
k2 auxiliary regressors can either be included or not, we have 2k2 models to consider. In contrast to common practice in the
model averaging literature we shall not assume that the disturbances are identically and independently distributed. Instead
we assume that

u ∼ N(0, Ω(θ)), (2)
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