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a b s t r a c t

The cross-validation deletion–substitution–addition (cvDSA) algorithm is based on data-
adaptive estimation methodology to select and estimate marginal structural models
(MSMs) for point treatment studies as well as models for conditional means where the
outcome is continuous or binary. The algorithm builds and selects models based on user-
defined criteria formodel selection, andutilizes a loss function-based estimation procedure
to distinguish between differentmodel fits. In addition, the algorithm selectsmodels based
on cross-validation methodology to avoid ‘‘over-fitting’’ data. The cvDSA routine is an R
software package available for download. An alternative R-package (DSA) based on the
same principles as the cvDSA routine (i.e., cross-validation, loss function), but one that is
faster and with additional refinements for selection and estimation of conditional means,
is also available for download. Analyses of real and simulated data were conducted to
demonstrate the use of these algorithms, and to compare MSMs where the causal effects
were assumed (i.e., investigator-defined), with MSMs selected by the cvDSA. The package
was used also to select models for the nuisance parameter (treatment) model to estimate
the MSM parameters with inverse-probability of treatment weight (IPTW) estimation.
Other estimation procedures (i.e., G-computation and double robust IPTW) are available
also with the package.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, epidemiologists’ knowledge about the theory and application of marginal structural models (MSMs)
to examine causal effects in observational studies has grown substantially. MSMs provide unbiased estimates of marginal
effects in the presence of both causal intermediates in point treatment (exposure) studies and time-dependent confounding
in longitudinal studies (Robins et al., 2000). Conventional (conditional) association models provide stratum-specific effects
which are typically biased in these situations. MSMs eliminate the need to adjust for confounding in themodels themselves.
Instead, nuisance parameter models (e.g. treatment models) are used to address confounding, so that with MSMs one
obtains a direct, unconditional assessment of the exposure on the response. While model selection procedures for nuisance
parameters have been addressed in the published literature (Mortimer et al., 2005; Brookhart and van der Laan, 2006),
procedures for the selection of MSMs have not. The recent development of a general cross-validated data-adaptive model
selection procedure represents an important methodological advancement to better characterize the causal effects of
interest through MSM selection and a more flexible examination of the exposure–response causal curve.
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The cross-validation deletion–substitution–addition (DSA) algorithm selects models adaptively for MSMs and nuisance
parameter models for point treatment studies (Wang et al., 2004). The approach is derived from a general methodology
that provides data-adaptive machine learning type algorithms based on user-supplied criteria (e.g., maximum model size)
(van der Laan and Dudoit, 2003; Sinisi and van der Laan, 2004). Specifically, the algorithm builds a model space of candidate
models based on so-called deletion, substitution and additionmoves and utilizes a loss function-based estimation procedure
to distinguish between different models with respect to model fit (van der Laan and Dudoit, 2003). The goal is to select a
model that results in the best estimate of a given data distribution. Moreover, the algorithm selects models based partly on
V -fold cross-validation (Efron and Tibshirani, 1993; Wang et al., 2004) and, thus, avoids the problem of ‘‘over-fitting’’ data
that can occur with other data-adaptive model selection algorithms (e.g., StepAIC function, R-Software, current version, R
Foundation for Statistical Computing).
This paper discusses methodological aspects of the algorithm and compares it with other model selection criteria. An

illustrative analysis demonstrates how the algorithmworks. Two R-packages are available which implement the algorithm:
one is a well-developed package (DSA) for the selection of conditional models (e.g., nuisance parametermodels); the second
is for MSM selection for point treatment studies (cvDSA), and includes components for the selection of nuisance parameter
models (cvGLM) and selection of MSMs (cvMSM). The second package (cvDSA) is less developed than the first in terms of
ease of use and speed.We advise selection of the treatmentmodelwith the DSA package, and submission of thismodel to the
cvMSMprocedure forMSMselection. The discussion of the algorithm is in the context of its selection ofMSMs, but it provides
an overall view of the DSA algorithm as a general tool for model selection. Both packages are available for download from
http://stat-www.berkeley.edu/~laan/Software/index.html. Additional background and technical details about the algorithm
are available (Dudoit et al., 2003; van der Laan and Dudoit, 2003; Sinisi and van der Laan, 2004; Wang et al., 2004).

2. Background on MSMs

MSMs are used to define causal parameters of interest for exposure–response relations based on the concept of
counterfactuals (Robins et al., 2000). This concept permits assessment of observational data in a hypothetical framework
in which, contrary to fact, subjects were exposed to all possible levels of an exposure and had outcomes associated
with those exposures. With counterfactual data, one can evaluate whether differences in the outcome are attributable to
causal differences in the level of the exposure. To recreate the conditions under which observed data can be evaluated as
counterfactual data requires several assumptions.
First, the observed data for any given subject represent one realization of his/her counterfactual data that correspond

with the exposure actually received (consistency assumption) (Robins, 1999). In a point treatment study, the observed data
can be represented as O = (W , A, Y = Y (A)), where W represents the baseline covariates, A the treatment (exposure)
assignment, and Y (A) the outcome under observed treatment A. The observed data O = (W , A, Y ) on a randomly sampled
subject represent one realization/component of the counterfactual ‘‘full’’ data X = ((Y (a), a ∈ A),W ) when exposure
a = A.
A second assumption is the no ‘‘unmeasured confounders’’, or ‘‘randomization assumption’’: Y (a) ⊥ A|W — i.e., the

treatment of interest is ‘‘randomized’’ with respect to the outcome within strata of the measured covariates, W (Robins,
1999). To satisfy this assumption, one conditions on all the measurable confounders of the exposure and outcome through
a nuisance parameter model. Estimation of nuisance parameters can occur either by a model of a regression of the outcome
on treatment (exposure) and all potential confounders (W ) (G-computation estimation, double robust inverse probability of
treatmentweight (DR-IPTW) estimation), or amodel of the conditional probability of treatment givenW (inverse probability
of treatment weight (IPTW) estimation). Correct characterization of one of these nuisance parameter models is required to
assess properly the effect of treatment on outcome without regard to potential extraneous factors.
Lastly, an additional assumption (experimental treatment assignment, or ETA) is required to provide unbiased estimates

with IPTW estimation. This assumption states that all exposures have a positive probability of occurrence, given baseline
covariates.
The parameter of interest in an MSM is the treatment-specific mean E(Y (a)|V ), possibly conditional on some baseline

covariates V that are a subset ofW (V ⊂ W ). When V = W , the MSM represents a traditional multiple regression model,
where the effect of a is a fully adjusted causal parameter. Classical MSMs define a model for E(Y (a)|V ) such as a linear
model m(a, V |β), so that the parameter of interest is the regression parameter β in this assumed model. The goal of the
cross-validation DSA algorithm is to achieve a correct characterization (i.e., fit) of the nuisancemodels andMSMs to evaluate
causal effects for point treatment studies.
Additional details of the theory and application of MSMs are available (Robins, 1999; Hernán et al., 2000; van der Laan

and Robins, 2002; Yu and van der Laan, 2002; Haight et al., 2003; Neugebauer and van der Laan, 2003; Bryan et al., 2004;
Mortimer et al., 2005).

3. Overview of the cross-validation deletion–substitution–addition algorithm

A possible estimator of the treatment-specific mean (MSM)minimizes the empirical risk – a statistical criterion of model
fit defined below – over all candidate treatment-specific means. However, since the model space of possible treatment-
specific means is infinite dimensional, given the different parameterizations of the treatment variable and the baseline
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