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a b s t r a c t

A random effects model is presented to estimate multivariate data of mixed data types.
Such data typically appear in studies where different response variables are measured
repeatedly for one subject. It is possible to relate normal, binary, multinomial and count
data by our joint model. Further flexibility with respect to model specification is obtained
by including modern variable selection techniques. Auxiliary mixture sampling leads to
a Gibbs sampling type scheme which is easy to implement since no additional tuning is
needed. The method is illustrated by transaction data of a costumer cohort acquired by an
apparel retailer.
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1. Introduction

In this paper we model multidimensional data which arise when different response variables are measured repeatedly
for one subject. Usually these responses are not of the same type but are measured on different scales, yielding mixed
data with continuous and discrete outcomes. Since measurements are taken repeatedly over time on each subject under
study not only dependencies between the response components but also within subject dependencies have to be taken into
account. For repeated measurements of a single data type the usual approach is to use linear random effects models for
normal or general random effects models for discrete data. However, combination of different data types to a joint model is
a challenging problem. In the present paperwe specify a random effectsmodelwhich combines normal, binary,multinomial
and count outcomes. We account for within subject dependencies by defining a random effects specification for the linear
predictors of the single data types. These single response types are then linked by adding covariances between random
effects of the different data types.
Such a general model for mixed data was not estimated in the literature before. This is mainly due to computational

difficultieswhich arisewhen combining different data types. Clustered data ofmixed type received attention in particular for
a binary and anormal response component in the context of toxicity studies (Fitzmaurice and Laird, 1995; Catalano andRyan,
1992; Regan and Catalano, 1999b,a). One approach is to model the joint distribution of both outcomes as the product of a
marginal and a conditional distribution, see Cox andWermuth (1992) for a discussion of different factorizations. Correlation
of repeated measurements for one subject is taken into account in the marginal model as well as in the conditional model,
estimation is accomplished by generalized estimation equations. The same type of approach is taken by Yang et al. (2007) for

I The views expressed in the paper are those of the authors and do not necessarily reflect those of the Austrian Federal Economic Chamber.
∗ Corresponding author.
E-mail addresses: helga.wagner@jku.at (H. Wagner), regina.tuechler@wko.at (R. Tüchler).

0167-9473/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2009.12.007

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:helga.wagner@jku.at
mailto:regina.tuechler@wko.at
http://dx.doi.org/10.1016/j.csda.2009.12.007


H. Wagner, R. Tüchler / Computational Statistics and Data Analysis 54 (2010) 1206–1218 1207

bivariate longitudinal data where one component is continuous and the other is Poisson count. Within subject correlation
is taken into account for each response type by assuming a compound symmetry covariance matrix for observations of one
subject. A different modeling approach, taken in Regan and Catalano (1999b); Gueorguieva and Agresti (2001) and Faes
et al. (2008), is based on the interpretation of binary response as a dichotomization of an underlying normal variable and
assuming a bivariate normal distribution for the normal response and the underlying normal variable. Correlation between
the two responses and intra-cluster or within subject correlation can be taken into account by either explicit modeling of
the covariance structure as in Regan and Catalano (1999b) or by a random effects specification where random effects and/or
errors are assumed to follow a general bivariate normal distribution as in Gueorguieva and Agresti (2001). In principle this
approach allows a full random effects specification for multivariate responses, however due to computational aspects so far
researchers focused their work on simplified models. Faes et al. (2008) consider this problem in a classical setting and use
pseudo-likelihood for joint estimation of all pairwise bivariate generalized linear mixed models.
In our paper we estimate a full random effects model. By using data augmentation we combine not only the normal

responses but also the discrete ones to a linear model. The novel method of auxiliary mixture sampling then leads to a Gibbs
sampling type scheme. Until recently Bayesian estimation of generalized linear models for categorical or count data was
only possible if Metropolis–Hastings steps were included. Auxiliary mixture sampling for single data types was developed
in Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter et al. (2009) for Poisson counts, and in Frühwirth-
Schnatter and Frühwirth (2007) for binomial and multinomial responses.
With many covariates at hand specification of random and fixed effects is a complicated problem. Recently variable

selection tools are used to solve such model selection problems, see e.g. George and McCulloch (1997) for a description of
the stochastic search variable approach, Smith and Kohn (2002) for covariance selection for normal data, and Frühwirth-
Schnatter and Tüchler (2008) and Tüchler (2008) for covariance selection in normal and logistic random effects models,
respectively. In our paper variable and covariance selection enable us to start with a very general model specification. All
predictor variables at hand may be included and all effects may be specified as random effects. During the course of MCMC
sampling those effects with zero means are detected and those effects which are fixed rather than random are restricted
to fixed effects. Since the different data types are related through the variance–covariance matrix covariance selection also
reveals whether such a relationship is present or not. If all covariances between effects of certain data types were selected
as zero no relation between these data types would be present and the joint model would split into separate models.
The paper is structured as follows. In Section 2 we define the model. It is transformed into a Gaussian random effects

model by auxiliary mixture sampling in Section 3.1 and variable and covariance selection is incorporated in Section 3.2. The
prior and the simulation steps are described in Sections 3.3 and 3.4, respectively. The method is applied to simulated data
in Section 4 and Section 5 gives a real-data example. Section 6 summarizes the results.

2. Random effects model for mixed data

Let Y = (Y 1, . . . , Y K )′ denote a multivariate response variable which is observed for i = 1, . . . ,N subjects on
t = 1, . . . , Ti occasions. The components Y k, k = 1, . . . , K may be either normal, binary, multinomial or Poisson counts.
Let ykit denote the observation of the kth component measured for subject i at time point t , let y

k
i denote the sequence of Ti

observations for the kth component of subject i, and let yi summarize all TiK observations of subject i.
To relate themeanµkit = E(y

k
it) to the linear predictor η

k
it we introduce a distinct link function gk(µ

k
it) = η

k
it , k = 1, . . . , K

for each component depending on the type of the kth response component. For Poisson components we use the log-link
function

µkit = exp(η
k
it),

for binary components we consider the logit link function

µkit =
exp(ηkit)
1+ exp(ηkit)

,

whereas for normal components ykit we use the identical link

µkit = η
k
it

and assume a constant variance ykit ∼ N
(
µkit , σ

2
k

)
.

We consider the following random effects specification for the linear predictors ηki of the sequence y
k
i :

ηki = Xiβki .

Xi is a design matrix of dimension Ti× d, where d equals the number of covariates in the model. βki are normally distributed
random effects. We assume that the same covariates are used for each of the K response components, whereas the random
effects are allowed to differ between components.
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