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a b s t r a c t

We consider likelihood and Bayes analyses for the symmetric matrix von Mises–Fisher
(matrix Fisher) distribution, which is a common model for three-dimensional orientations
(represented by 3 × 3 orthogonal matrices with a positive determinant). One important
characteristic of this model is a 3 × 3 rotation matrix representing the modal rotation,
and an important challenge is to establish accurate confidence regions for it with an
interpretable geometry for practical implementation. While we provide some extensions
of one-sample likelihood theory (e.g., Euler angle parametrizations of modal rotation),
our main contribution is the development of MCMC-based Bayes inference through non-
informative priors. In one-sample problems, the Bayes methods allow the construction of
inference regions with transparent geometry and accurate frequentist coverages in a way
that standard likelihood inference cannot. Simulation is used to evaluate the performance
of Bayes and likelihood inference regions. Furthermore, we illustrate how the Bayes
framework extends inference from one-sample problems to more complicated one-way
random effects models based on the symmetric matrix Fisher model in a computationally
straightforward manner. The inference methods are then applied to a human kinematics
example for illustration.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Data points as three-dimensional rotationmatrices arise in investigations inmaterials science (e.g., crystal orientations in
metals Mackenzie, 1957; Bingham et al., 2009a) as well as studies of human kinematics (Rancourt et al., 2000), and the ma-
trix Fisher is themost widely referenced distribution formodeling such observations (Downs, 1972). A large literature exists
on likelihood methodology for this distribution, but there has been considerably less work on Bayes analyses. For example,
advances in maximum likelihood inference for the matrix Fisher distribution have been made by Khatri and Mardia (1977)
and Jupp andMardia (1979), with further work done by Prentice (1986), Mardia and Jupp (2000), and Chikuse (2003). Chang
and Rivest (2001) also developedM-estimation connected to likelihood inference. In terms of Bayes inference for thematrix
Fisher distribution, Chang and Bingham (1996) outlined an approach for stipulating informative priors, while in an unpub-
lished work, Camano-Garcia (unpublished) considered Gibbs samplers for general Langevin (or matrix Fisher) distributions.
Despite these developments and the clear popularity of the matrix Fisher distribution, relatively little appears to be

known about the potential benefits of Bayes inference for this distribution or about the relative finite-sample performances
of likelihood and Bayesmethods for this model. For example, the Bayes development in Chang and Bingham (1996) targeted
large-sample approximations of posterior distributions, oftenwith informative priors amenable to such approximations.We
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aim instead to explore a practical implementation of Bayes methods based on non-informative priors, under the common
parametrization of the symmetric matrix Fisher used by Chang and Bingham (1996).
Thismatrix Fisher distribution is useful formodeling symmetric random errors around a fixed ‘‘central location’’ S, which

is a 3×3 rotationmatrix that constitutes anunusualmodel parameter but a keymodel summary in the existing literature.We
show that Bayes methods offer computationally straightforward inference for this and, in even small samples, can produce
inference regions with frequentist coverage rates that match nominal credible levels. Additionally, while a likelihood
approach can provide a confidence region for S through a usual chi-square calibration, the likelihood function itself does
not ‘‘order’’ the matrix-valued parameter space for S in a geometrically clear way that easily conveys the notion of inference
set ‘‘size’’. As a consequence, likelihood confidence regions havemathematically convenient set-theoretic definitions, but do
not clearly convey information about statistical precision. We illustrate, however, that non-informative Bayes regions for S
maybe constructed to have a simple geometrical structure that indicates precision (size)while retaining accurate frequentist
coverages. In these ways, the Bayes methods can provide improved frequentist inference for the symmetric matrix Fisher
distribution.
Beyond the one-sample problem,we also build and illustrate Bayes inference in one-way randomeffectsmodels based on

the symmetric matrix Fisher distribution. Our intent in this is to stimulate greater interest in Bayes methods for the Fisher
model by demonstrating how such methods extend naturally from the one-sample situation to more complex inference
scenarios. The Bayes framework may be more tractable than a purely likelihood approach for some problems andmay open
new inference possibilities for the matrix Fisher distribution.
Section 2 provides a preliminary framework, including a constructive description of the symmetric matrix Fisher

distribution and a likelihood formulation. Although we focus on the matrix Fisher distribution in particular, the Bayes
and likelihood methodologies presented here can apply to a larger class of distributions for random rotations which, as
explained in Section 2, have the same kind of ‘‘constructive’’ definition and parametrization as the symmetric matrix Fisher.
Asymptotic distributional results for one-sample likelihood inference are given based on an Euler angle representation of S,
and simulations illustrate these approximations applied to the finite-sample distributions of likelihood statistics. Section 3
describes the Bayes methods for the one-sample problem using non-informative priors and a Metropolis–Hastings within
Gibbs algorithm. Numerical studies compare the finite-sample properties of likelihood and Bayes inference regions for S
wherewe impose a shape constraint on these regions to facilitate interpretation. Simulations indicate that the Bayes regions
tend to have better coverage properties, even in samples as small as n = 10. Section 4 then examines the performance
of Bayes methods for one-way random effects models built on the symmetric matrix Fisher distribution, while Section 5
illustrates the matrix methods with human kinematics data. Section 6 provides some conclusions.

2. The symmetric matrix Fisher distribution and one-sample likelihood

2.1. Constructive definition and model density

We first give a simple construction for generating random rotations from the symmetric Fisher model, from which the
matrix density follows. LetΩ represent the set of 3× 3 rotation matrices (orthogonal matrices that preserve the right hand
rule). The symmetric matrix Fisher distribution may be characterized through a location parameter S ∈ Ω and a spread
parameter κ > 0, where the model itself (denoted by F(S, κ) here) describes the deviation of random orientations O ∈ Ω
from a common ‘‘central’’ orientation S ∈ Ω . O ∈ Ω from a F(S, κ)model may be constructed as O = S · P, where a random
perturbation

P = UUT + (I3×3 − UUT ) cos r +

( 0 −u3 u2
u3 0 −u1
−u2 u1 0

)
sin r ∈ Ω (1)

is a rotation matrix built from two independent components: a unit vector UT = (u1, u2, u3) ∈ R3 identified by a point
uniformly distributed on the unit sphere and an angle r ∈ (−π, π] distributed according to a density (with respect to the
Lebesgue measure)

C(r|κ) =
(1− cos r) exp(2κ cos r)
2π(I0(2κ)− I1(2κ))

, r ∈ (−π, π]; (2)

above Ii denotes the modified Bessel function of order i and the parameter κ ∈ (0,∞) controls the spread of the angle
density (2), which is symmetric around zero. The matrix P represents the positions of coordinate axes inR3 (denoted by the
3× 3 identity matrix I3×3) after spinning the R3-frame around the random axis U ∈ R3 by the random angle r . Note that a
small |r| value in (1) entails a small rotational deviation P from I3×3 (e.g., r = 0 implies P = I3×3) and, since κ controls the
spread or concentration of r around 0, this parameter also controls the variation of a F(S, κ) observation O = SP from the
location parameter S ∈ Ω .
To understand how the spread component κ in the density (2) of r translates into ‘‘spread’’ for the F(S, κ) distribution,

consider Table 1. Here, ∆1(κ) is the distributional median of |r|, where |r| is sometimes referred to as a ‘‘misorientation
angle’’ with density 2 · C(|r||κ), and ∆2(κ) represents the distributional median of the maximum angle between standard
coordinate axes S = I3×3 and the same axes rotated by a F(I3×3, κ) observation (i.e., the maximum angle over 3 rotated
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