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a b s t r a c t

For the analysis of longitudinal data with multiple characteristics, we are devoted to
providing additional tools for multivariate linear mixed models in which the errors are
assumed to be serially correlated according to an autoregressive process. We present a
computationally flexible ECM procedure for obtaining the maximum likelihood estimates
of model parameters. A score test statistic for testing the existence of autocorrelation
among within-subject errors of each characteristic is derived. The techniques for the
estimation of random effects and the prediction of further responses given past repeated
measures are also investigated. The methodology is illustrated through an application to a
set of AIDS data and two small simulation studies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

During the past few decades, statistical methods for continuous longitudinal data with single-response repeated
measures have received considerable attention via a vast amount of research. Laird and Ware (1982) developed the linear
mixed model (LMM), which incorporates the random effects and allows for an unbalanced design in the sense that all
subjects do not have an equal number of measurements and/or a common set of occasions. More general LMMs have been
extensively studied by Jennrich and Schluchter (1986), Laird et al. (1987), Lindstrom and Bates (1988) and Chi and Reinsel
(1989), among others. A comprehensive introduction to mixed models can be obtained from the monographs by Verbeke
and Molenberghs (2000), Diggle et al. (2002), Fitzmaurice et al. (2004), and Hedeker and Gibbons (2006).
In many biomedical studies and clinical trials, it is quite common that repeated measures are collected on more than

one response variable and are often referred to as multivariate longitudinal data. Reinsel (1984) proposed a general linear
model with multivariate random effects to handle the balanced multi-outcome longitudinal data. Zucker et al. (1995) made
inferences for the relationship between the subject-specific intercept and slope in a linear growth curve model. Shah et al.
(1997) extended the LMM to themultivariate linearmixedmodel (MLMM),which allows analyzing unbalancedmultivariate
longitudinal data. Ideally, the MLMM has become the most important and frequently used analytical tool for continuous
longitudinal data with multiple characteristics. Several alternative methods, including generalized estimating equations,
two-stage factor analyses and the latent variable model, were considered in Sammel et al. (1999). Recently, Roy (2006)
discussed how to estimate the correlation coefficient between two variables with repeated observations under bivariate
linear mixed models.
Most works in the literature dealing with the MLMM have assumed that observations within each subject are serially

uncorrelated. Since longitudinal data are occasionally collected over time, observations within each subject may tend to
be serially correlated. To account for the effects of autocorrelation other than those caused by random effects, we exploit
an autoregressive (AR) process of order p for the within-subject errors of each characteristic. Note that the use of a much
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richer ARMA family is a straightforward extension (cf. Rochon, 1992 and Lee et al., 2005). In this paper, we aim at providing
additional tools for the MLMM with AR(p) errors. The estimates of model parameters are calculated via the Expectation
Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993), which is computationally flexible and conveniently
implemented with existing softwares. Standard error estimates are calculated by inverting the Fisher information matrix.
In Section 2, we establish notation and present the model formulation. In Section 3, we discuss computational aspects

of maximum likelihood (ML) estimation under a complete data framework. In Section 4, a score test statistic is offered
to verify the existence of autocorrelation among the within-subject errors. Empirical Bayes estimation of random effects
and prediction of future values are presented in Section 5. The proposed methodology is illustrated with a real example
concerning the AIDS Clinical Trials Group Study 175 (ACTG 175) and two simulation studies in Section 6. Concluding remarks
are given in Section 7, and the technical derivations are sketched in Appendix.

2. Model formulation

Suppose there areN subjects in a longitudinal study and for each subject there are r characteristics observed over time. Let
Yi = [yi1 : · · · : yir ] be an ni × r matrix of response variables for subject i (i = 1, . . . ,N), where each yij = (yij1, . . . , yijni)

T

is an ni × 1 vector of the jth (j = 1, . . . , r) characteristic measured at particular time points t = 1, . . . , ni. For ease of
notation, we use the vec() operator, which vectorizes amatrix by stacking its columns vertically; the vech() operator, which
extracts the distinct elements of amatrix into a vector; and the Kronecker product, denoted by⊗, whichmaps two arbitrarily
dimensioned matrices into a larger matrix with a specific block structure.
We define a family of MLMMwith AR(p) dependence as

Yi = XiA+ ZiBi + Ei, (1)

where Xi and Zi are known full-rank covariate matrices of dimensions ni × q1 and ni × q2, respectively; A = [α1 : · · · : αr ]
is a q1 × r matrix of fixed effects with each vector of regression coefficients αj being used to describe the population mean
of each corresponding characteristic; Bi is a q2 × r matrix of unobservable random effects; and Ei = [ei1 : · · · : eir ] is an
ni× r matrix of residuals. For notation simplicity, we shall replace vec(Bi), vec(Ei) and vec(A)with bi, ei and α, respectively.
Furthermore,we assume bi ∼ Nq2r(0,9), where9 = [ψjj′ ] is a q2r×q2r positive-definitematrixwithψjj′ ’s (j, j

′
= 1, . . . , r)

being q2 × q2 block partitioned matrices. In particular for j = j′,ψjj can be viewed as a covariance structure of the random
effects for the jth characteristic only. For the within-subject errors, we assume ei ∼ Nnir(0,6 ⊗ Ci), independent of bi’s,
where 6 = [σjj′ ] is an r × r unstructured matrix describing the variance and covariance among r response variables, and
Ci is an ni × ni structured AR(p)-process matrix. The form of Ci = Ci(φ) = [ρ|t−t ′|(φ)], for t, t ′ = 1, . . . , ni, is specified to
address the autocorrelation among ni occasions on each outcome, where

ρs(φ) = ρs = φ1ρs−1 + · · · + φpρs−p, ρ0 = 1, (s = 0, . . . , ni − 1),

namely the Yule–Walker equation (Box et al., 1994), is an implicit function of the AR parameters φ = (φ1, . . . , φp)
T. For

the pure AR model, the admissible values of φ are restricted in a p-dimensional hypercube Cp. To ensure the stationarity of
the AR model, the roots of 1 − φ1B − φ2B2 − · · · − φpBp = 0 must lie outside the unit circle, where B is a backward shift
operator such that Bvρs = ρs−v , for v = 0, . . . , p.
From model (1), the joint distribution of vec(Yi) and bi is[

vec(Yi)
bi

]
ind
∼ N(ni+q2)r

([
vec(XiA)

0

]
,

[
3i (Ir ⊗ Zi)9

9(Ir ⊗ Zi)T 9

])
, (2)

where 3i = (Ir ⊗ Zi)9(Ir ⊗ Zi)T + 6 ⊗ Ci. We remark that the LMM with AR(1) of Chi and Reinsel (1989), specified by
yij ∼ Nni(Xiαj, ZiψjjZ

T
i + σjjCi(φ1))with Ci(φ1) taking the form of (1− φ

2
1)
−1
[φ
|t−t ′|
1 ] (t, t ′ = 1, . . . , ni;−1 < φ1 < 1), can

be treated as a special case of model (1). Let θ = (A,9,6,φ) denote the entire model parameters. It follows from (2) that
the log-likelihood function of θ for Y = (Y1, . . . , YN), omitting the constant term, is

` = `(θ|Y) = −
1
2

N∑
i=1

{
log |3i| + vec(Yi − XiA)T3−1i vec(Yi − XiA)

}
. (3)

Explicit expressions for the score vector sθ and the Fisher information matrix Jθθ for θ = (αT,ωT)T, where ω =
(vech(9)T, vech(6)T,φT)T, are derived in Appendix A.

3. Maximum likelihood estimation via the ECM algorithm

3.1. Parameter estimation

The EM algorithm (Dempster et al., 1977) has been well recognized as a useful tool for ML estimation in models with
missing values or latent data. The ECM algorithm is a generalization of EM inwhich themaximization (M) step is replaced by
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