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a b s t r a c t

A new approach to species distribution modelling based on unsupervised classification via
a finite mixture of GAMs incorporating habitat suitability curves is proposed. A tailored
EMalgorithm is outlined for computingmaximum likelihood estimates. Several submodels
incorporating various parameter constraints are explored. Simulation studies confirm that
under certain constraints, the habitat suitability curves are recovered with good precision.
The method is also applied to a set of real data concerning presence/absence of observable
small mammal indices collected on the Tibetan plateau. The resulting classification was
found to correspond to species level differences in habitat preference described in the
previous ecological work.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Understanding variations in species distribution has remained one of the key challenges in ecology since its
conceptualisation as a discipline (Guisan and Zimmerman, 2000). It is natural that ecologists should seek to model species
distribution and early models date from the nineteen twenties (Guisan and Thuiller, 2005). The uses of species distribution
models (SDMs) in conservation biology include (Guisan and Thuiller, 2005) quantification of environmental niches for
species, testing biogeographical, ecological and evolutionary hypotheses, invasive species monitoring, impact assessment
for climatic change, prediction of unsurveyed sites for rare species, management support for species reintroduction and
recovery, conservation planning, species assemblage modelling, classification of biogeographic or ecogeographic regions
and calibration of ecological distance between patches in metapopulation or gene flow models.
Several techniques have been employed for SDMs including generalised linear models (GLMs), their flexible extensions

generalised additive models (GAMs) (Guisan et al., 2002; Greaves et al., 2006; Segurado et al., 2006) and multiple adaptive
regression splines Vaniscotte et al. (2009), tree based classification techniques (Franklin, 1998), ordination (Schenková et al.,
2001), eco-niche factor analysis (Hirzel et al., 2002), Bayesian approaches (Gelfand et al., 2006), neural networks (Bessa-
Gomes and Petrucci-Fonseca, 2003) and support vector machines (Drake et al., 2006). Ecologists have long recognised the
bias introduced into SDMs when data are overdispersed with respect to a simple parametric model such as can arise when
strong spatial dependence exists between observations, for example Guisan and Thuiller (2005), Barry and Elith (2006) and
Segurado et al. (2006), but the proportion of articles published in ecological journals in which these biases are reasonably
corrected for remains low. One problem, particularly in the spatial context, has been the lack of available tools for analysing
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overdispersed binary or Poisson data. This situation has been slowly changing since the seminal work of Diggle, Tawn and
Moyeed (1998) who introduced the geostatistical concept of Gaussian random fields to the GLM literature to account for
spatially smooth sources of overdispersion. Since then appropriate tools have become increasingly available: the geoRglm
library (Christensen and Ribeiro, 2002) for Bayesian analysis of GLMs with geostatistical priors and the mgcv library for
fitting generalised additivemixedmodelswith either geostatistical or spline based randomeffects using penalised likelihood
(Wood, 2006) are just two examples of what is now available for R (R Development Core Team, 2007).
A recent review (with online R code) of available techniques for the estimation of Gaussian random fieldswithin aGLM for

spatially dependent Bernoulli data (Paciorek and Ryan, 2005) suggested that the estimation of spatially structured random
effects could be reasonable if the underlying spatial structure was simple relative to the sampling density of observation
points. However when each curve and bend in a complex hidden surface was sparsely sampled then attempts to estimate
the hidden surface proved less successful. The estimation of complicated hidden spatial structure from Bernoulli samples
is now recognised to be highly data demanding suggesting that these models might be unreasonable in certain practical
situations where logistical constraints limit the quantity of available data. We could ask the question ‘‘is it always necessary
to estimate continuous spatial random effects plus three or four variogram parameters for binary ecological data sets?’’ or
even ‘‘are hidden spatial structures in ecological data sets always smooth?’’. If the answers to these questions is ‘‘no’’ then
perhaps we can simplify and reduce the number of random effects and parameters that we expect to estimate, thereby
reducing the demands we place on our data sets. In this paper we attempt to do this using a mixture model approach where
the usual single GAM with n continuous random effects might be replaced by say K GAMs. Such a simplification would
require a small number of parameters relative to n, especially when further constraints between the mixture components
are imposed.
Note that here we do not attempt to explicitly model the sources of overdispersion. The mixture model approach

simply provides a general solution to account for various overdispersion sources. According to Robert (1996) mixture
components ‘‘correspond to particular zones of support of the true distribution’’ and thus provide local representations
of the likelihood function. While these local supports ‘‘do not always possess an individual significance or reality for the
particular phenomenonmodelled’’, interpretability can be possible in situations such as discrimination or clustering. This is
the case for our model and a real data example is Section 5 is found to provide a very natural ecological interpretation.
It is worth noting that the simplification we propose is not necessarily made at the expense of physical interpretation.

In a given ecological context a small number of discrete random effects could be a reasonable model for hidden spatial
structure or other sources of overdispersion. For example, if the species in question is known to form colonies, one GAM
might represent colony formation as a function of habitat suitability under relatively ideal conditions while a second GAM
could account for possible absence of colonies in otherwise favourable habitat arising from a complex history of unobserved
factors. Similarly, if the observations in question materialised from numerous different processes then a mixture model
approach could be expected to outperform its K = 1 counterpart. The most pertinent number of random effects K could
then be identified usingmodel selection techniques. Herein lies an additional advantage of our approach, our GAM utilises a
simple transformation on covariates and so the parameters for ourmixturemodel can be estimated bymaximum likelihood
(ML). For highly flexible models such as GAMs with splines or random fields ML is known to be prone to over fitting and
penalisations are often imposed to compensate. Since we use a mixture of simple GAMs with relatively limited flexibility
we can use maximum likelihood directly without penalisation. For model comparison statistics such as Akaike Information
Criterion (AIC) (Burnham and Anderson, 2002) are therefore readily available.
In the current paper we implement this proposed model simplification in a habitat suitability identification context.

Habitat suitability curves are used to identify non-linear species responses along environmental gradients (see for example
Jowett et al. (1991), Roussel et al. (1999) and Mäki-Petäys et al. (2002)). The concept is to identify a curve which transforms
a continuous environmental variable to a scale more relevant to the distribution of the species in question thereby giving
an index of habitat suitability.

2. A generalised additive model for habitat suitability identification

2.1. Habitat suitability curves in a GAMs framework

Generalised additivemodels (GAMs) have become popular tools in ecology due to their ability to detect non-linearities. A
recent reviewof GAMs can be found inWood (2006). The usual approach,whenmodelling an n length vector Y = Y1, . . . , Yn,
where Y follows some distribution of the exponential family, is to modify the linear predictor of a generalised linear model
(McCullagh and Nelder, 1989) via the inclusion of smooth functions of covariates (Wood, 2006). Here we take the simple
case,

g(µi) = β0 + β1H(xi), (1)

where i provides an index on observations,µi ≡ E[Yi], g(·) is a link function, β are coefficients andH is a smooth function of
covariate x. CommonlyH is chosen from a class of spline functions such as B-splines, P-splines, thin plate splines etc. (Wood,
2006). Such choices offer highly flexible solutions but the large number of parameters involved requires that practitioners
remain cautious to problems of over fitting. Here, we depart from standard practice and adopt a much simpler two-
parameter habitat suitability curve based on power functions for modellingH . Our proposed habitat suitability curve (HSC)



Download English Version:

https://daneshyari.com/en/article/416026

Download Persian Version:

https://daneshyari.com/article/416026

Daneshyari.com

https://daneshyari.com/en/article/416026
https://daneshyari.com/article/416026
https://daneshyari.com

