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Available online 19 November 2008 associated with the fractional integration model in which pre-sample shocks are either

included in the lag structure, or suppressed. There can be substantial differences between
the distributions of these two processes and of functionals derived from them, so that
it becomes an important issue to decide which model to use as a basis for inference.
Alternative methods for simulating the type I case are contrasted, and for models close
to the nonstationarity boundary, truncating infinite sums is shown to result in a significant
distortion of the distribution. A simple simulation method that overcomes this problem is
described and implemented. The approach also has implications for the estimation of type
I ARFIMA models, and a new conditional ML estimator is proposed, using the annual Nile
minima series for illustration.
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1. Introduction

The literature on long memory processes in econometrics (for recent examples, see inter alia Johansen and Nielsen (2008),
Caporale and Gil-Alana (2008), Coakley et al. (2008) and Haldrup and Nielsen (2007)) has adopted two distinct models as
a basis for the asymptotic analysis, the limit processes specified being known respectively as type I and type II fractional
Brownian motion (fBM). These processes have been carefully examined and contrasted by Marinucci and Robinson (1999).
When considered as real continuous processes on the unit interval, they can be defined respectively by
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where —% <d< % and B denotes regular Brownian motion. In other words, in the type II case the second term in (1.1) is
omitted. It will be convenient to write the decomposition
X =X"+ X", (1.3)

where X**(r) is defined as the second of the two terms in (1.1). The processes X* and X** are Gaussian, and independent of
each other, so we know that the variance of (1.1) will exceed that of (1.2). As shown by Marinucci and Robinson (1999), the
increments of (1.1) are stationary, whereas those of (1.2) are not.
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These processes are commonly motivated by postulating realizations of size n of discrete processes and considering the
weak limits of normalized partial sums, as n — oo. Define

x = (1 =0, (1.4)

where we assume for the sake of exposition that {u,}*°_ is an i.i.d. process with mean 0 and variance o2, and
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where, letting I'(-) denote the gamma function,
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Defining the partial sum process
1 [nr]
Xn(r) = v ;Xr (1.7)

itis known that X;, 4 X,where 4 denotes weak convergence in the space of measures on Dyg 1}, the space of cadlag functions
of the unit interval equipped with the Skorokhod topology. (See for example Davidson and de Jong (2000)). On the other
hand, defining

uf = 1(t > O)u; (1.8)

and x{ as the case corresponding to x; in (1.4) when u} replaces u;, and then defining X like (1.7) with x{ replacing x;, it is

known that X Sxt (Marinucci and Robinson, 2000).

The model in (1.8) is one that is often used in simulation exercises to generate fractionally integrated processes, as an
alternative to the procedure of setting a fixed, finite truncation of the lag distribution in (1.4), common to every t. However,
from the point of view of modelling real economic or financial time series, model (1.8) is obviously problematic. There is, in
most cases, nothing about the date when we start to observe a series which suggests that we ought to set all shocks preceding
it to 0. Such truncation procedures are common in time series modelling, but are usually justified by the assumption that
the effect is asymptotically negligible. In this case, however, where the effect is manifestly not negligible in the limit, the
choice of model becomes a critical issue.

The setting for this choice is the case where a Monte Carlo simulation is to be used to construct the null distribution of a
test statistic postulated to be a functional of fBM. If model (1.8) is used to generate the artificial data, then the distribution so
simulated will be the Type Il case. However, if the observed data ought to be treated as drawn from (1.4), then the estimated
critical values will be incorrect even in large samples. It then becomes of importance to know how large this error is.

Section 2 of the paper reviews and contrasts the main properties of these models. A leading difficulty in working with
the type I model is to simulate it effectively, and as we show in Section 3, the fixed lag truncation strategy is not generally
effective, except by expending a dramatically large amount of computing resources. Since type I fBM has a harmonizable
representation, another suggestion has been to use this to simulate the model, and then use a fast Fourier transform to
recover the data in the time domain. However, we also show that this method cannot function effectively without large
resources. Methods for generating type I processes do exist, for example circulant embedding and wavelet aproximations,
but these are relatively difficult to implement in an econometric context. In Section 4 we suggest a new simulation
method for type I processes, whose computational demands are trivial, and being implemented in the time domain adapts
naturally to econometric modelling applications. The method is highly accurate when the data are Gaussian, and is always
asymptotically valid.

Finally, we point out in Section 5 how the same approximation technique can be used to estimate ARFIMA time series
models under the assumption that the true processes are of type I. This is in contrast to the usual time domain estimation by
least squares, or conditional maximum likelihood, where the necessity of truncating lag distributions to match the observed
data series implicitly (and perhaps inappropriately) imposes restrictions appropriate to the type Il case. The method entails
fitting some constructed regressors, whose omission will potentially bias the estimates in finite samples. The technique
is illustrated with an application to the well-known series of annual Nile minima. Section 6 concludes the paper. Proofs
are contained in Appendix A, and Appendix B exhibits some simulations of representative fractional Brownian functionals,
under the two definitions.

The computations in this paper were carried out using the package Time Series Modelling 4 (Davidson, 2008) which runs
under the Ox 4/5 matrix programming system (Doornik, 2006).
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