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Abstract

A fast update algorithm for online calculation of the Qn scale estimator is presented. This algorithm allows robust analysis of
high-frequency time series in real time. It provides reliable estimates of a time-varying volatility even if many large outliers are
present and it offers good efficiency in the case of clean Gaussian data.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The increasing availability of high-frequency data in financial markets and many other fields requires fast,
automatic, and reliable methods which can extract the relevant information from the data in real time. Measurement
artifacts can influence the output of such analyses severely. High-frequency data are especially susceptible to errors:
as stated by Brownlees and Gallo (2006), “the higher the velocity in trading, the higher the probability that some error
will be committed in reporting trading information”.

Many preprocessing procedures for automatic data cleaning and outlier detection have been suggested. As it is well
known that non-robust estimators like empirical means and standard deviations can be strongly mislead by outliers,
we should not rely on such methods in automated applications, not even for data cleaning. Robust estimators which
are able to resist isolated outliers and patches of outlying values should be preferred. Robust methods even allow us
to work with the raw data. Nevertheless, the use of robust methods in time series analysis is not widely established
yet, especially in the online context. The computational demands of naive algorithms are typically much higher than
those of non-robust methods, causing computation times which are unacceptably large, especially in applications to
ultra-high-frequency data.

In this paper we discuss robust scale estimators in time series analysis, which allow us to extract possibly time-
varying volatilities in the presence of outliers, see Gather and Fried (2003) and Gelper et al. (2007). These scale
estimators can also be applied to estimate the autocorrelations within the process (Ma and Genton, 2000). Moreover,
they can be used to standardize test statistics, e.g. for robust level shift detection (Fried, 2007; Nunkesser et al., in
press).
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We focus on the robust Qn estimator of scale (Rousseeuw and Croux, 1993) applied to time series. This estimator
is defined as a multiple of an order statistic of all pairwise absolute differences between data points x1, . . . , xn ∈ R:

Qn(x1, . . . , xn) = cn · {|xi − x j | : 1 ≤ i < j ≤ n}(`), ` =

(
bn/2c + 1

2

)
, (1)

where cn denotes a finite-sample correction factor achieving unbiasedness at Gaussian samples. For data in general
position the breakdown point of Qn is about 50%, i.e. the estimate is bounded and stays away from zero even if almost
50% of the data are contaminated arbitrarily. Another, more widely-known scale estimator with this property is the
median absolute deviation about the median (MAD):

MAD = dn ·med {|xi −med{x1, . . . , xn}| : i = 1, . . . , n} , (2)

where again dn yields unbiasedness at Gaussian samples. For independent Gaussian data, Qn is less variable than
other high-breakdown point scale estimators. Its asymptotic efficiency of 82% (relative to the empirical standard
deviation) is much larger than the asymptotic efficiency of the MAD, which is only 36%. A drawback of Qn has
been its computational complexity. Calculation of the MAD from n data points needs O(n) computation time, and its
value can be updated in O(log n) time when applying it to moving time windows of n subsequent observations when
analyzing locally stationary data (Bernholt et al., 2006). On the other hand, a straightforward implementation of Qn
would result in a computation time of O(n2). Croux and Rousseeuw (1992) provide an offline algorithm for Qn which
needs O(n log n) time.

Another class of robust estimators of scale which combine high breakdown point and good efficiency are τ
estimators (Maronna and Zamar, 2002). They are defined by

τ(x1, . . . , xn) =
σ̂ 2

n

n∑
i=1

ρ

(
xi − µ̂

σ̂

)
, (3)

where σ̂ is a highly robust initial estimate of scale, µ̂ is a robust location estimate and ρ is a weight function.
The τ estimator implemented in the R package robustbase uses the MAD as initial scale estimate, a weighted
mean with weights based on Tukey’s biweight applied to robustly scaled distances from the sample median, and
ρc(u) = min{c2, u2

} with the default value c = 3.
Section 2 describes a new update algorithm for the Qn estimator. This algorithm is easy to implement and allows

online application since it is substantially faster in practice than the offline algorithm. It allows us to incorporate in-
coming new observations and to remove old data quickly when using a moving time window. It can also be used for
online computation of the Hodges–Lehmann location estimator and the medcouple estimator (Brys et al., 2004). Sec-
tion 3 compares the performance of the Qn estimator with the MAD, a trimmed standard deviation, and a τ estimator
of scale for online extraction of time-varying volatilities. Computation times are analyzed for different window widths
to show the practical relevance of the new update algorithm. Finally, Section 4 gives concluding remarks.

2. An update algorithm for the Qn estimator

To analyze the scale of a time series x1, . . . , xN online, we apply the Qn estimator (1) at each time t to a time
window of length n ≤ N , which contains the observations xt−n+1, . . . , xt . Instead of calculating Qn for each
window from scratch, we use an update algorithm. This means that for each move of the window from t to t + 1 all
stored information concerning the oldest observation xt−n+1 is deleted and new information concerning the incoming
observation xt+1 is inserted. Note that this algorithm is not restricted to moving time windows; it can also handle
arbitrary sequences of deletions and insertions of data points.

For offline computation of Qn , Croux and Rousseeuw (1992) suggest the algorithm of Johnson and Mizoguchi
(1978) with an optimal running time of O(n log n) for n observations. Therefore, an optimal update algorithm for the
Qn estimator needs at least O(log n) time for insertion or deletion.

In the following, we construct an online version of the algorithm of Johnson and Mizoguchi (1978). It computes an
arbitrary, say kth order statistic in a multiset of form X +Y , where X +Y is the multiset {xi+ yi | xi ∈ X and yi ∈ Y}
for X = (x1, . . . , xn) and Y = (y1, . . . , yn) n-tuples of real numbers. This algorithm can be used to compute Qn ,
the Hodges–Lehmann location estimator (HL), and the MCn estimator (see Brys et al. (2004) or Nunkesser et al. (in
press)).
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