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Abstract

The possibility of considering random projections to identify probability distributions belonging to parametric families is explored.
The results are based on considerations involving invariance properties of the family of distributions as well as on the random
way of choosing the projections. In particular, it is shown that if a one-dimensional (suitably) randomly chosen projection is
Gaussian, then the distribution is Gaussian. In order to show the applicability of the methodology some goodness-of-fit tests based
on these ideas are designed. These tests are computationally feasible through the bootstrap setup, even in the functional framework.
Simulations providing power comparisons of these projections-based tests with other available tests of normality, as well as to test
the Black—Scholes model for a stochastic process are presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The use of projections of very-high-dimensional objects on randomly chosen subspaces is getting an increasing
interest as a powerful tool in several applications of Mathematics. For instance, this idea is employed to obtain approx-
imate algorithms in problems of high computational complexity (see, e.g., Vempala, 2004) or, even, randomly chosen
projections are starting to be employed as a tool to detect copyright violations on images posted in the Internet (see
Lejsek et al., 2005).

Although in such those applications Statistics is at the basis of the procedure, a genuinely statistical analysis of the
possibilities of the idea (including the design of methods based on it and a theoretical exploration of their power) has
not been carried out yet. We are aware of some results in which random projections have been used to estimate mixtures
of distributions (see Gldéfalvi, 2002; Vempala and Wang, 2004), but even these papers have not been written from a
purely statistical point of view but rather from learning theory.
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A first look at the problem with statistical motivation was Cuesta-Albertos et al. (2006a). To analyze to what extent
random projections characterize a probability distribution, the closed cone

E(P, Q) :={heH: P,= 0O} e))

associated to two Borel distributions, P and Q, on a Hilbert space H is considered there. In (1), P, denotes the marginal
distribution of P along the & direction, i.e., the law of (X, h) if X is an H-valued random element with law P and (-, -) is
the scalar product in H. In the sequel we will often refer to this distribution as the projection of P on 4. With a similar
meaning we will denote by Py the projection of P on a linear subspace V.

A slight modification of one of the main results in Cuesta-Albertos et al. (2006a) gives the following theorem (see
Theorem 4.1 in Cuesta-Albertos et al., 2006a). It involves the property of a probability measure, P, being determined
by its moments (in the sequel P € DM (H)). A discussion of this property (including sufficient conditions like the
so-called Carleman condition) can be found in Shohat and Tamarkin (1943) (see also Section 8.4 in Chow and Teicher,
1997). A straightforward result is that an affine transformation of a probability measure determined by its moments is
also determined by its moments.

Theorem 1.1 (Cuesta—Fraiman—Ransford). Let P € DM (H) and Q be Borel probability measures on a separable
Hilbert space, H. Let i be a non-degenerate Gaussian distribution on H. Then P = Q if and only if u[E(P, Q)] > 0.

This result was employed in Cuesta-Albertos et al. (2006b) to obtain some consistent goodness-of-fit test to a fixed
distribution.

We emphasize that Theorem 1.1 goes, somehow, in a direction opposite to that of older results in Diaconis and
Freedman (1984) where (p. 793) it is claimed that “For many data sets, we show that most projections are nearly the
same and approximately Gaussian”. Below we include further comments on this point.

Our goal, in this paper, is to generalize Theorem 1.1 in some senses, to employ these results to obtain goodness-of-fit
tests for families of distributions and to make a preliminary study to explore the possibilities of the technique. In
particular, taking into account the above quotation from Diaconis and Freedman (1984), we are particularly interested
in seeing how this procedure works when applied to the design of goodness-of-fit tests for Gaussianity.

The proposed generalizations can be summarized as follows. First, in Section 2, we present a class of probability
measures which can replace the Gaussian measure, u, in Theorem 1.1. The possibility of choosing suitable (non-
Gaussian) measures to increase the power against particular alternatives is still the object of current research.

In Section 3, the distribution P in Theorem 1.1 is replaced by a family of distributions. We consider two different
cases. In the simplest situation one single random projection suffices to determine whether a distribution belongs to
the family. This is the case for invariant families in the sense given in Definition 3.1. In particular, Theorem 3.6 states
that if a randomly chosen projection of a distribution is Gaussian, then the distribution is Gaussian.

We want to stress the interest of this result. Let us assume that we are interested in knowing whether a given
(multivariate) distribution, P, is Gaussian. Projection pursuit techniques to reject this hypothesis are based on the fact
that, if P is not Gaussian, then not every one-dimensional projection is Gaussian. However, since most projections of
P are approximately Gaussian, an extensive search is required to find out one of the scarce directions in which the
projection of P is clearly not Gaussian. On the other hand, according to Theorem 3.6, this search is not required because,
if P is not Gaussian almost every projection of P is not Gaussian. Some simulations which are reported in Section 5.1
support this last point of view.

Section 3.2 focuses on non-invariant families. In this case, one projection is not sufficient to determine inclusion in
the family. We show, though, that for a location-scale model with k-dimensional parameter, (k + 1) projections suffice.
Notice that we are not considering here a projection on a (k + 1)-dimensional subspace, but (k + 1) one-dimensional
projections. Of course, it would suffice to handle the (k 4 1)-dimensional projection, but we want to remark that
applying, for instance, a (k 4+ 1)-dimensional Kolmogorov—Smirnov test is, by far, more time consuming than taking
the maximum of (k + 1) one-dimensional Kolmogorov—Smirnov tests.

Our results are applied in Section 4 to obtain goodness-of-fit tests to families of distributions. Unfortunately, when
more than one projection is considered, the goodness-of-fit test is often not distribution free; this is the case for the
Kolmogorov—Smirnov statistic that we consider in Section 5. We propose to apply bootstrap to estimate the distribution
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