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Abstract

This paper examines a misclassification problem that can arise when modelling data which contains low frequency components.
We illustrate this problem by fitting GAR(1) and AR(1) models to volume and transaction frequency data from the Australian Stock
Exchange.
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1. Introduction

The modelling of time series which contain low frequency components is a problem of interest in many fields of
study. In particular, low frequency events in financial time series often represent the most important events, i.e. the
booms and crashes of the market. An important case of these low frequency components is in the study of long memory
processes, see Beran (1994). The motivation for this work arose from the paper by Granger and Teräsvirta (1999) which
discussed a possible misclassification between nonlinear models and I (d) processes. In Peiris (2003) it was shown that
modelling a time series of varying frequency components with an ARMA process leads to a misclassification problem.
In this paper we show that modelling such a time series with a GAR(1) or a AR(1) model yields similar results for the
regression parameter, however, for the case of the GAR(1) model we have another parameter that is able to describe
the degree of frequency of the data. This result indicates how the ARMA model is unable to distinguish between time
series of this type.

2. The model

Let B be the backshift operator and I be the identity operator such that BjXt = Xt−j and I = B0. The model we
consider in this paper is the generalised autoregressive of order 1 (or GAR(1)) process given by

(I − �B)�Xt = Zt , (1)
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where |�| < 1, � > 0 are constants and {Zt } is a sequence of uncorrelated random variables with mean 0 and variance
�2 (see Peiris et al., 2004). When � = 1 the model reduces to an AR(1) process.

The spectral density of the GAR(1) model is given by

fX(�) = �2

2�
(1 − 2� cos � + �2)−�, −�����. (2)

Thus it can be seen how the parameter � controls the degree of frequency of the process. For example, for � > 0 it is
clear that fX(�) is large in neigbourhoods of (�, �) = (0, 1) and (�, �) = (�, −1). The autocovariance of this process
has been shown in Peiris (2003) and is given by

�0 = Var(Xt ) = �2F(�; �; 1; �2), (3)

�k = Cov(Xt , Xt+k) = �2�k�(k + �)F (�; k + �; k + 1; �2)

�(�)�(k + 1)
, k > 0, (4)

where �(x) is the gamma function and F(a; b; c, d) is the Gauss hypergeometric function, given in Abramowitz and
Stegun (1968). Examples shown in Peiris (2003) show that the autocorrelation (acf), partial autocorrelation (pacf) and
spectrum are similar for some values of � and �.

3. Fitting to data

In this section we fit both GAR(1) and AR(1) models to Australian Stock Exchange data in order to demonstrate
the misclassification problem that arises when modelling data of varying frequency. We use daily traded volume and
transaction frequency data, both of which have been proposed as measures for the stock price volatility (Bertram, 2004).
The acf, pacf and spectrum shown in Fig. 1 indicate that an AR(1) model may be suitable to describe the data.

We emphasise that we are not suggesting GAR(1) or AR(1) as a plausible model for this process, rather using the
data as an example of the problem encountered when dealing with a time series of this type. Empirical studies of
this data has shown it to possess slowly decaying correlations and hence a fractionally differenced ARIMA(1, d, 0);
d ∈ (0, 0.5) would be an alternative model. It must be noted that the time series for the volume is bound below by
zero, however, since the mean of the process is quite large (	 ∼ 106) we ignore the effects that this lower bound has
on the time series. Table 1 displays the estimated GAR(1) and AR(1) parameters for both the volume and transaction
frequency, calculated for a selection of stocks.

Looking at the AR(1) parameters for volume we find that they fall roughly into two categories. The stocks CML, RIO,
WMC suggest a regression parameter �AR ∼ 0.50 ± 0.1 while the stocks BHP, BIL, CBA indicate �AR ∼ 0.80 ± 0.1.
Examining the GAR(1) parameter values we find that the regression parameter is approximately the same as that
of the AR(1) model, �GAR ≈ �AR. However, within the two categories we find that the value of � varies greatly.
This result indicates the inability of the ARMA model to discriminate between the different time series. For instance,
Table 1 suggests the same AR(1) model for both WMC and RIO, while the GAR(1) parameters show the extent of their
differing frequency components. Turning our attention to the transaction frequency we find results similar to those of
the volume. For most of the stocks, the parameter estimates indicate an AR(1) model with � ∼ 0.75 ± 0.1. Looking
at the GAR(1) estimates we find that although the regression parameter estimates are roughly the same, the frequency
parameter values vary wildly, with � values lying in the range (0.5, 1).

A forecast on standardised CBA volume (mean removed) was performed with both AR(1) and GAR(1) models. The
three forecasts from the origin at t = 1000, 1001 and 1002 days are displayed in Table 2. These results we can see that
for the first two GAR(1) forecasts are closer to the observed values than those of AR(1).

4. Summary

We have shown how the extra parameter of the GAR(1) model is able to control the degree of frequency of the model
and thereby describe data that consists of varying frequency components. The GAR(1) and AR(1) model parameters
were estimated from volume and transaction data from a selection of equities traded on the Australian Stock Exchange.
It is well known that the data in study contain low frequency components that lead to a slowly decaying autocorrelation
function. We showed that a misclassification problem can occur whereby the ARMA model is unable to distinguish
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