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Abstract

Partial least squares (PLS) path modeling has found increased applications in customer satisfaction analysis thanks to its ability
to handle complex models. A modified PLS path modeling algorithm together with a model building strategy are introduced and
applied to customer satisfaction analysis at the French energy supplier Electricité de France. The modified PLS algorithm handles
all kinds of scales (categorical or nominal variables) and is well suited when nominal or binary variables are involved. PLS path
modeling and structural equation modeling are confirmatory approaches and thus need an initial conceptual model. A two-step model
building strategy is presented; the first step is based on Bayesian networks structure learning to build the measurement model and the
second step is based on partial correlation and hypothesis tests to build the structural model. Applications to customer satisfaction
data are presented.
© 2007 Elsevier B.V. All rights reserved.

Keywords: PLS path modeling; Partial least squares; Structural equation models; Model building strategy; Marketing application

1. Introduction

Partial least squares (PLS) path modeling is becoming a major tool in customer satisfaction studies. When dealing
with structural equation models, two important points should be analyzed in more depth. When building questionnaires
for customer satisfaction studies many variables may be of interest but have to be abandoned because they are not
continuous or Likert scale like variables. Another issue is the model building strategy; when many variables are
involved, expert knowledge can be too weak to build a robust and well suited model. Furthermore when variables are of
mixed type the usual approach can lead to poor results. We thus present: First, an adapted version of PLS path modeling
for different types of data (ordinal or nominal) called partial maximum likelihood (PML) (note that this approach is
not related to Cox, 1975’s partial likelihood), it is especially advantageous in the case of nominal or binary variables
(Derquenne, 2005, 2006; Jakobowicz et al., 2005). Then, a two-step model building strategy is introduced. The first
step uses discrete Bayesian networks; it is very useful when using categorical variables and many constraints can be
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added to the measurement model obtained. The second step is based on statistical testing to build the structural model
using the first component of the principal components analysis on each block of the model (Derquenne and Hallais,
2004; Jakobowicz et al., 2005).

The article is organized as follows: In Section 2, a basic introduction to the PLS path modeling estimation method
is provided. The modified PLS path modeling algorithm is presented in Section 3. In Section 4, the model building
strategy is described. Applications to customer satisfaction surveys follow in Section 6. Remarks on the contributions
of these approaches to structural equation modeling with latent variables and customer satisfaction analysis, together
with future researches conclude this paper.

2. PLS path modeling

For an extensive review on PLS path modeling, the reader is referred to Tenenhaus et al. (2005). We focus on two
points: the treatment of non-continuous data and model building strategies.

However, we first introduce some basic concepts on model specification and structural equation modeling in customer
satisfaction analysis. In customer satisfaction analysis, concepts are complex and each notion is defined by many facets.
In our models, answers to customer satisfaction survey questions will be included as manifest variables (X ;5,), which
are grouped in blocks related to a concept like image, satisfaction or loyalty associated to a latent variable (). The
relations between manifest and latent variables form the outer or measurement model and relations between latent
variables form the inner or structural model. The usual methods like LISREL (see Bollen, 1989 for a review) were
unlikely to be adapted to complex marketing models, as shown by Tenenhaus et al. (2005). We decided to focus on PLS
path modeling, which was introduced by Wold (1982) and adapted to customer satisfaction index analysis by Fornell
(1992).

Throughout this article, we decided to focus on mode A for the outer estimation of the latent variables and the centroid
scheme for the inner estimation. It is a deliberate choice and our approaches could be extended to the formative case
and other inner schemes that are available in PLS path modeling, at least for the PML approach. Furthermore, we use
mode A because we consider that in customer satisfaction analysis indicators are reflective (Johnson et al., 2001).

The PLS path modeling algorithm can be divided into three main steps:

(1) A quantification step where initial latent variables are calculated. This step is done using:

Pj
Y= whxji, (1)

i=1

where y’. is the outer estimate of the latent variable &; at step 7, X; is the manifest variable i associated with the
latent variables £; and p; is the number of manifest variables in block j. During this step, the initial outer weight
wo.i can be chosen randomly. Usually it is set at 1 for the first manifest variable of each block and at O for the
others (Lohmoller, 1989).
(2) An iterative algorithm where latent variables are estimated iteratively with respect to the inner model and the
outer model.
e [nner estimation: Throughout this article we focus on the centroid scheme for inner estimate z’/. of the latent

variable &;:

Z; = Z sign(cor(y'j, yz/))yt]u (2)
;/‘/GJ

where J is the set of all latent variables connected to &;.
e Outer estimation: Before performing the outer estimation y’l. of latent variable &, outer weights are updated

using mode A (reflective indicators) estimation:

w;h = cov(Xjp, z;). 3)
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