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Abstract

Longitudinal data are not uncommon in many disciplines where repeated measurements on a
response variable are collected for all subjects. Some intended measurements may not be available
for some subjects resulting in a missing data pattern. Dropout pattern occurs when some subjects
leave the study prematurely. The missing data pattern is defined as intermittent if a missing value
followed by an observed value. When the probability of missingness depends on the missing value,
and may be on the observed values, the missing data mechanism is termed as nonrandom. Ignoring
the missing values in this case leads to biased inferences. The stochastic EM (SEM) algorithm is
proposed and developed to find parameters estimates in the presence of intermittent missing values.
Also, in this setting, the Monte Carlo method is developed to find the standard errors of parameters
estimates. Finally, the proposed techniques are applied to a real data from the International Breast
Cancer Study Group.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Longitudinal studies play a prominent role in many disciplines such as medicine, public
health and social sciences. In longitudinal studies, each subject is measured repeatedly
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for the same response (outcome) variable either under different conditions, or at different
times, or both. The response variable may be continuous, categorical or ordinal. The main
interest of longitudinal studies, usually, is to study the change in the response variable over
time. Longitudinal data analysis requires special statistical methods due to inter-correlation
between the observations of the same subject.

The missing values is a common phenomenon in longitudinal studies. The missing data
occur whenever, one or more of, measurement sequences are incomplete. A distinguishing
feature of incomplete longitudinal data analysis is the need to address the underlying causes
of missing values. If the missing data process depends on the missing values themselves, the
missing data mechanism is nonrandom. Ignoring the missing values with such data would
lead to biased conclusion. Another important feature is whether the missing values pattern
is dropout (monotone) or intermittent (nonmonotone). The dropout pattern, in the sense that
some subjects may withdraw prematurely, i.e. any missing value is never followed by an
observed value. The intermittent pattern whenever an observed value is available even after
a missing value occurs. Missing data mechanism is classified to three different types due to
Rubin (1976) and Little and Rubin (1987). These types are missing completely at random,
missing at random, and nonrandom (informative) missingness. Nonrandom dropouts in
longitudinal studies have been extensively studied, but there has been less attention paid to
nonrandom intermittent missing values.

The maximum-likelihood estimates for incomplete data can be obtained using the EM
algorithm (Dempster et al., 1977). However, in the nonrandom case, the simplicity of the
EM algorithm is lost. The expectation step is problematic and does not admit a closed form
solution. Also, in some situations, the M-step is computationally unattractive. Many authors
have tried to introduce new variants of the EM algorithm that can overcome the complexity
of either the E-step or the M-step. Several approaches are available to facilitate the M-step
when it is not simple, see for example, Lange (1995), Liu and Rubin (1994), Meng and
Rubin (1993), Meng and van Dyk (1995) and Rai and Matthews (1993). A possible solution
for the intractable E-step is to use the Monte Carlo EM algorithm (Tanner and Wong, 1987;
Wei and Tanner, 1990) and a stochastic version of the EM algorithm (Celuex and Diebolt,
1985; Delyon et al., 1999; Diebolt and Ip, 1996; Gu and Kong, 1998; Zhu and Lee, 2002).
A relatively recent review of the EM algorithm and its extensions is in McLachlan and
Krishnan (1997) and references therein. The stochastic EM (SEM) algorithm is a stochastic
version of the EM algorithm, which has been introduced by Celuex and Diebolt (1985), and
subsequently in Diebolt and Ip (1996), as a way for executing the E-step using simulation.

The EM algorithm does not provide directly the standard errors of the estimates. Hence,
methods for evaluating these standard errors need to be considered. Several methods have
been introduced to solve this problem, see for example, Louis (1982), Meilijson (1989) and
Meng and Rubin (1991). Efron (1994) and Ip (1994) have introduced a stochastic version
of the Louis’ method (the Monte Carlo method).

Diggle and Kenward (1994) propose a modelling framework for longitudinal data with
nonrandom dropout. This approach relates the probability of dropout at any time with the
current observation and the previous observations. The estimation process is cumbersome
due to integrations that need to obtained numerically.

Troxel et al. (1998) generalize the Diggle–Kenward model to handle intermittent missing
data pattern. They use the Nelder–Mead simplex algorithm (Nelder and Mead, 1965) to
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