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a b s t r a c t

In this paper, random effects are included in the destructive weighted Poisson cure rate
model. For parameter estimation we implemented a classical approach based on the re-
stricted maximum likelihood (REML) methodology and a Bayesian approach based on
Dirichlet process priors. A small scale simulation study is conducted to discuss parame-
ter recovery and the performance of the proposed methodology is illustrated with a real
data example.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cure rate models were developed to account for the presence of cured or immune individuals in a population where the
main objective is the study of survival (in a broad sense) times. Berkson and Gage (1952) is frequently cited as the pioneering
approach in this setting. Their proposed model, often called the mixture model (MM), assumes the existence of two types
of subjects in the population: susceptible and cured individuals. Maller and Zhou (1996) presents a concise and complete
study on the MM methodology from a classical point of view. Alternatively, Yakovlev and Tsodikov (1996) considered the
so-called promotion time cure rate model (PTCRM), having in mind cancer patients. Specifically, they assume the existence
of a latent quantity, M , representing the number of cells that may develop a cancerous tumour for a given individual. In
spite of its medical genesis, this model is frequently considered in non-medical settings, where cells are replaced by latent
causes of the event of interest. Susceptible and cured individuals are characterized byM ≥ 1 andM = 0, respectively.When
choosing between the two approaches, one may rely on the fact that the PTCRM allows inference for both, the probability
of an specific individual being cured and the initial number of carcinogenic cells. In contrast, the MM allows inference only
on the cure probability. In an attempt to generalize the PTCRM for a broader class of applications, Rodrigues et al. (2011)
introduced the so-called destructive weighted Poisson cure rate model where it is assumed that each one of the initial causes
have a probability p of generating the event of interest. Therefore, out of M , only D ≤ M causes would remain in effect.
The interpretation of M and D depends on the particular situation: in cancer trials, M may represent the initial number of
potentially cancerous cells, whereasD denotes the number of such cells that are kept active after a given treatment, possibly
leading to a relapse. Obviously, when p = 1 the original PTCRM is obtained.

In this paper we deal with a slightly more general situation, where patients are naturally grouped into clusters, such as
clinics of families. If those clinics are considered as a random sample from the population of clinics, the use of mixedmodels
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Table 1
Characteristics of some destructive weighted Poisson cure rate models discussed in Rodrigues et al. (2011).

Destructive length biased Poisson
model (DLBPM)

Destructive exponentially weighted
Poisson model (DEWPM)

Destructive negative binomial
model (DNBM)

w(m; φ) m eφm Γ (φ−1
+ m)

Parameter space for φ – φ ∈ R φ > 0
Distribution ofM Po(θ) + 1 Po(θeφ) NB


φ,

φθ

1+φθ


Distribution of D Po(θp) + Bern(p) Po(θpeφ) NB


φ,

φθp
1+φθp


Spop(t; θ, p, φ) (1 − pF(t | λ))e−θpF(t|λ) exp{−θpeφF(t | λ)} {1 + φθpF(t | λ)}−φ−1

hpop(t; θ, p, φ) pf (t | λ)

θ + [1 − pF(t | λ)]−1


θpeφ f (t | λ) θpf (t|λ)

1+φθpF(t|λ)

Cure rate (1 − p)e−θp exp{−θpeφ
} {1 + φθp}−φ−1

is a natural choice. We consider two random effects related to clinics: U related to relapse times of the disease caused by
the non-destroyed cells and V associated with the clinic cure rate. Although several authors considered this approach in the
context of non-destructive models (see, for example, Yau and Ng (2001), Lai and Yau (2008), Lopes and Bolfarine (2012) and
Gallardo et al. (2013)) to the best of our knowledge there are no studies related to destructive models. In addition to the
inclusion of random effects, we propose classical and Bayesian approaches in the estimation process. The random effects
vector (U, V ) is supposed to be bivariate normally distributed for the classical approach and a non-parametric framework
based on Dirichlet processes priors is considered for the Bayesian approach.

The paper is organized as follows. Section 2 presents the ordinary destructive weighted Poisson model. In Section 3, we
extend the model incorporating the bivariate random effects. In Section 4 we develop classical and Bayesian approaches for
parameter estimation. Section 5 presents a simulation study to evaluate parameter recovery for the classical approach.
Section 6 deals with an application of the proposed model and approaches to a real data set related to a study of the
Oropharynx carcinoma. Section 7 presents a final discussion on the performance of the proposed methodologies.

2. Destructive weighted Poisson cure rate models

The model introduced in Rodrigues et al. (2011), considers M as a (unobservable) random variable denoting the initial
number of carcinogenic cells of an individual, with probability mass function

P(M = m; θ, φ) =
w(m; φ)p∗(m; θ)

Eθ [w(M; φ)]
, m = 0, 1, 2, . . . , (1)

where w(·; φ) is a non-negative weight function with parameter φ, p∗(·; θ) is the probability mass function (pmf) of the
Poisson distributionwithmean θ > 0. Eθ [·] indicates that the expectation is takenwith respect to the variableM following a
Poisson distributionwithmean θ . GivenM = m, let ϱj, j = 1, 2, . . . , n, be independent and identically distributed Bernoulli
random variables. If the jth potentially cancerous cell is still alive after a procedure or treatment, ϱj = 1; otherwise, ϱj = 0.
Therefore, for P(ϱj = 1) = p, MM and PTCRM can be seen as particular cases of p = 1 (which impliesM = D).

The unobserved quantity

D =


ϱ1 + · · · + ϱM , ifM > 0,
0, ifM = 0,

D ≤ M , is the total number of carcinogenic cells not destroyed by the treatment. Clearly, D | M = m ∼ Bin(m, p) if m > 0
and P(D = 0 | M = 0) = 1. Also,

P(D = d; θ, p, φ) =
e−θp(θp)d

d!Eθ [w(M; φ)]
Eθ(1−p)[w(M; φ)].

LetWa be a random variable expressing the time at which the ath non-destroyed cell produces a tumour (also known as
the promotion time). For uncured patients, D > 0 and we assume that Wa, a = 1, 2, . . . ,D, are conditionally independent
given D, with common distribution function F(t | λ), where λ is a set of unknown parameters. For cured patients, D = 0
and we set P(W0 = ∞) = 1. The distribution F is a proper distribution function.

The time until the occurrence of the event of interest can be represented by T = min{Wa, 0 ≤ a ≤ D}. The corresponding
survival function, also called the population survival function, is given by

Spop(t; θ, p, φ) = P(T > t) = exp{−θpF(t | λ)}
Eθ(1−pF(t|λ))[w(M; φ)]

Eθ [w(M; φ)]
. (2)

Note that limt→+∞ Spop(t) = exp{−θp}{Eθ(1−p)[w(M; φ)]/Eθ [w(M; φ)]}; therefore (2) is an improper function and the
limiting value corresponds to the cure fraction or the probability of cure. Table 1 summarizes some features corresponding
to the three models considered by Rodrigues et al. (2011).
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