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a b s t r a c t

Estimation in the deformable templatemodel is a big challenge in image analysis. The issue
is to estimate an atlas of a population. This atlas contains a template and the corresponding
geometrical variability of the observed shapes. The goal is to propose an accurate estima-
tion algorithm with low computational cost and with theoretical guaranties of relevance.
This becomes very demanding when dealing with high dimensional data, which is particu-
larly the case ofmedical images. Theuse of an optimizedMonteCarloMarkovChainmethod
for a stochastic ExpectationMaximization algorithm, is proposed to estimate themodel pa-
rameters by maximizing the likelihood. A new Anisotropic Metropolis Adjusted Langevin
Algorithm is used as transition in theMCMCmethod. First it is proven that this new sampler
leads to a geometrically uniformly ergodicMarkov chain. Furthermore, it is proven also that
undermild conditions, the estimatedparameters converge almost surely and are asymptot-
ically Gaussian distributed. Themethodology developed is then tested on handwritten dig-
its and some 2D and 3Dmedical images for the deformablemodel estimation.Morewidely,
the proposed algorithm can be used for a large range of models in many fields of applica-
tions such as pharmacology or genetic. The technical proofs are detailed in an appendix.1

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider here the deformable template model introduced for Computational Anatomy in Grenander and Miller
(1998). This model, which has demonstrated great impact in image analysis, was developed and analyzed later on by many
groups (among other Miller et al., 2002, Marsland and Twining, 2004, Vercauteren et al., 2009 and Su et al., 2013). It offers
several major advantages. First, it enables to describe the population of interest by a digital anatomical template. It also
captures the geometric variability of the population shapes through the modeling of deformations of the template which
match it to the observations. Moreover, the metric on the space of deformations is specified in the model as a quantification
of the deformation cost. This generative model not only describes the population, but also allows to sample synthetic data,
using both the template and the geometrical metric of the deformation space which together define the atlas. Nevertheless,
the key statistical issue is how to estimate efficiently and accurately these parameters of the deformable template model
from an observed population of images.
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1 The appendix is available as supplementary material (see Appendix A).
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Several numerical methods have been developed mainly for the estimation of the template image (for example Cootes
et al., 1995 and Joshi et al., 2004). Even if these methods lead to visual interesting results on some training samples, they
suffer from a lack of theoretical properties raising the question of the relevance of the output. Moreover they are not ro-
bust to noisy data. Another important contribution towards the statistical formulation of the template estimation issue was
proposed in Glasbey and Mardia (2001). However interesting this approach, it is not entirely satisfactory since the defor-
mations are applied to discrete observations requiring some interpolation. Moreover it does not formulate the analysis in
terms of a generative model which appears very attractive as mentioned above. To overcome these lacks, a coherent statis-
tical generative model was formulated in Allassonnière et al. (2007). For estimating all the model parameters, the template
image together with the geometrical metric, the authors proposed a deterministic algorithm based on an approximation of
the well-known ExpectationMaximization (EM) algorithm (see Dempster et al., 1977), where the conditional distribution is
replaced by a Dirac measure on its mode (called FAM-EM). However, such an approximation leads to the non-convergence
of the estimates, which is highlighted when considering noisy observations.

One solution to face this problem is to consider a stochastic approximation of the EM (SAEM) algorithm which was pro-
posed and proved to converge in Delyon et al. (1999). An extension using Monte Carlo Markov Chain (MCMC) methods was
developed and studied in Kuhn and Lavielle (2004, 2005) and Allassonnière et al. (2010b), allowing for wider applications.
To apply this extension to the deformable template model, the authors in Allassonnière et al. (2010b) chose a Metropo-
lis Hastings within Gibbs sampler (also called hybrid Gibbs) as MCMC method since the variables to sample were of large
dimension (the usual Metropolis Hastings algorithm providing low acceptation rates). This estimation algorithm has been
proved to converge in Allassonnière et al. (2010b).Moreover it performs verywell on very different kind of data as presented
in Allassonnière et al. (2010a). Nevertheless, the hybrid Gibbs sampler becomes computationally very expensive when sam-
pling very high dimensional variables. Although it reduces the dimension of the sampling to one, which enables to stride
easier the target density support, it loops over the sampling variable coordinates, which becomes computationally unusable
as soon as the dimension is very large or as the acceptation ratio involves heavy computations. To overcome the problem
of computational cost of this estimation algorithm, some authors propose to simplify the statistical model constraining the
correlations of the deformations (see Richard et al., 2009 and Maire et al., 2011).

Our purpose in this paper is to propose an efficient and convergent estimation algorithm for the deformable template
model in high dimension without any constrains. With regard to the above considerations, the computational cost of the
estimation algorithm can be reduced by optimizing the sampling scheme in the MCMC method.

The sampling of highdimensional variables is awell-knowndifficult challenge. In particular,many authors have proposed
to use the Metropolis Adjusted Langevin Algorithm (MALA) (see Roberts and Tweedie, 1996 and Stramer and Tweedie,
1999a). This algorithm is a particular random walk Metropolis Hastings sampler. Starting from the current iterate of the
Markov chain, one simulates a candidate with respect to a Gaussian proposal with an expectation equal to the sum of this
current iterate and a drift related to the target distribution. The covariance matrix is diagonal and isotropic. This candidate
is accepted or rejected with a probability given by the Metropolis Hastings acceptance ratio.

Somemodifications have been proposed, in particular to optimize the covariancematrix of the proposal in order to better
stride the support of the target distribution (see Stramer and Tweedie, 1999b, Atchadé, 2006, Marshall and Roberts, 2012
and Girolami and Calderhead, 2011). In Atchadé (2006) andMarshall and Roberts (2012), the authors proposed to construct
adaptive MALA chains for which they prove the geometric ergodicity of the chain uniformly on any compact subset of its
parameters. Unfortunately, this technique does not take the whole advantage of changing the proposal using the target
distribution. In particular, the covariance matrix of the proposal is given by a stochastic approximation of the empirical
covariance matrix. This choice seems completely relevant as soon as the convergence towards the stationary distribution
is reached. However, it does not provide a good guess of the variability during the first iterations of the chain since it is
still very dependent on the initialization. This leads to chains that may be numerically trapped. Moreover, this particular
algorithm may require a lot of tuning parameters. Although the theoretical convergence is proved, this algorithm may be
very difficult to optimize in practice into an estimation process.

Recently, the authors in Girolami and Calderhead (2011) proposed the Riemannmanifold Langevin algorithm in order to
sample from a target density in high dimensional setting with strong correlations. This algorithm is also a MALA based one
for which the choice of the proposal covariance is guided by the metric of the underlying Riemann manifold. The quantities
required to implement thismethod are not tractable in the deformable templatemodel. Note that this is commonwith other
application fields such as genetic or pharmacology, where models are often complex.

For these reasons, we propose to adapt the MALA algorithm in the spirit of both works in Atchadé (2006) and Girolami
and Calderhead (2011) to get an efficient sampler into the stochastic EM algorithm. Therefore, we propose to sample from a
proposal distribution which has the same expectation as the MALA but using a full anisotropic covariance matrix based on
the anisotropy and correlations of the target distribution. This sampler will be called AMALA in the sequel. The expectation
is obtained as the sum of the current iterate plus a drift which is proportional to the gradient of the logarithm of the target
distribution.We construct the covariancematrix as a regularization of the Grammatrix of this drift. We prove the geometric
ergodicity uniformly on any compact set of the AMALA assuming some regularity conditions on the target distribution. We
also prove the almost sure convergence of the parameter estimated sequence generated by the coupling of AMALA and SAEM
algorithms (AMALA–SAEM) towards the maximum likelihood estimate under some regularity assumptions on the model.
Moreover, we prove a Central Limit Theorem for this sequence under usual conditions on the model.
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