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a b s t r a c t

The concepts of faithfulness and strong-faithfulness are important for statistical learning of
graphical models. Graphs are not sufficient for describing the association structure of a dis-
crete distribution. Hypergraphs representing hierarchical log-linearmodels are considered
instead, and the concept of parametric (strong-)faithfulnesswith respect to a hypergraph is
introduced. The strength of association in a discrete distribution can be quantifiedwith var-
iousmeasures, leading to different concepts of strong-faithfulness. It is proven that strong-
faithfulness defined in terms of interaction parameters ensures the existence of uniformly
consistent parameter estimators and enables building uniformly consistent procedures for
a hypergraph search. Lower and upper bounds for the proportions of distributions that do
not satisfy strong-faithfulness are computed for different parameterizations andmeasures
of association.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graphical model is a set of probability distributions whose association structure can be identified with a graph. Given
a graph, the Markov property entails a set of conditional independence relations that are fulfilled by distributions in the
model. Distributions in the model that obey no further conditional independence relations are called faithful to the graph.
For each undirected graphical model, as well as for each directed acyclic graph (DAG) model, there is a distribution that is
faithful to the graph (cf. Spirtes et al., 2001). Moreover, the Lebesgue measure of the set of parameters corresponding to
distributions that are unfaithful to a graphical model is zero; this result was proven by Spirtes et al. (2001) for the case of
multivariate normal distributions, by Meek (1995) for discrete distributions on multi-way contingency tables, and by Peña
et al. (2009) for arbitrary sample spaces and dominating measures. It is also well-known, that a DAG model may include
distributions that are unfaithful to it but are not Markov to any nested DAG. This kind of unfaithfulness may occur due to
path cancellation and can arise both in the discrete and in the multivariate normal settings (cf. Zhang and Spirtes, 2008;
Uhler and Raskutti, 2013).

In the discrete case, the non-existence of a graph to which a distribution is faithful is related to the presence of higher
than first order interactions in this distribution. Graph learning algorithms (cf. Spirtes et al., 2001), which do not recognize
the presence of higher order interactions, may produce a graph which does not reveal the true association structure
(cf. Studený, 2005). In order to avoid such errors, graph learning algorithms usually assume the existence of a DAG to which
the distribution is faithful. Since the Lebesgue measure of the set of parameters corresponding to distributions that are
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unfaithful to the underlying graph is zero, the faithfulness assumption is not considered to be restrictive in the context of
graphical search. While graph search procedures assuming faithfulness are pointwise consistent, they are not uniformly
consistent and thus cannot simultaneously control Type I and Type II errors with a finite sample size (Robins et al., 2003).
To ensure existence of a uniformly consistent learning procedure, strong-faithfulness of a distribution to the underlying
DAG is needed (Zhang and Spirtes, 2003). Uhler et al. (2013) analyzed the Gaussian setting and showed that the strong-
faithfulness assumption may, in fact, be very restrictive and the corresponding proportions of distributions which do not
satisfy strong-faithfulness may become very large as the number of nodes grows.

The concepts of faithfulness and strong-faithfulness were originally introduced in the causal search framework, where
they are linked to identifiability of causal effects. However, aswe show in this paper using the discrete setting, these concepts
are also important for identifiability ofmore general parameters of association. In Section 2,we define the concept of amodel
class being closed under a faithfulness relation: for each positive distribution, there exists a model in such a class to which it
is faithful. By giving examples of distributions that are not faithful to any directed or undirected graphical model, we show
that thesemodel classes are not closed under the faithfulness relation based on the correspondingMarkov property. Further,
we introduce the concept of parametric faithfulness of a distribution to a hypergraph (instead of a graph). This concept seems
more adequate for categorical data, where hypergraphs can be used to represent hierarchical log-linear models. Indeed, we
show that the class of models associated with hypergraphs is closed under a parametric faithfulness relation.

In Section 3, we describe two major difficulties with the concept of strong-faithfulness in the discrete case. First, in con-
trast to role of correlations in themultivariate normal case, there is no single standardmeasure of the strength of association
in a joint distribution. Therefore, depending on the measure of association, different variants of strong-faithfulness may be
considered. Second, the proportion of strong-faithful distributions depends on the parameterization used and can only be
computed if the parameter space has finite volume. We explore the consequences of different parameterizations and mea-
sures of association for the case of the 2 × 2 contingency table. We define parametric strong-faithfulness with respect to
a hypergraph under a parameterization based on the log-linear interaction parameters. Assuming strong-faithfulness, we
show that the maximum likelihood estimators of the interaction parameters associated with the hyperedges are uniformly
consistent. As a result, we give a set of conditions underwhich Type I and Type II errors can be controlledwith a finite sample
size. We also discuss the uniform consistency of model selection procedures for a hypergraph search, for example, using the
approaches described by Edwards (2000, 2012).

In Section 4, we estimate the proportion of distributions that do not satisfy the parametric strong-faithfulness assump-
tion with respect to a given hypergraph.We give an exact formulation of these proportions, under a parameterization based
on conditional probabilities, for hypergraphs whose hyperedges form a decomposable set. The association structure of such
distributions may be discovered incorrectly during a hypergraph learning procedure. Finally, we define the concept of pro-
jected strong-faithfulness, which applies to distributions that do not belong to the hypergraph, and estimate the proportions
of projected strong-faithful distributions for several hypergraphs over the 2×2×2 contingency table. In Section 5, we con-
clude the paper with a brief discussion of our results and their implications.

2. Graphical and parametric faithfulness

We first review the concept of faithfulness with respect to a graph. We then introduce parametric faithfulness with
respect to a hypergraph and show that this is a more relevant concept for categorical data.

2.1. Faithfulness with respect to a graph

Let V1, . . . , VK be random variables taking values in I = I1 × · · · × IK , a Cartesian product of finite sets. I describes a
K -way contingency table and a vector i = (i1, . . . , iK ) ∈ I forms a cell. A subsetM ⊆ {1, . . . , K} specifies a marginal of the
joint distribution of V1, . . . , VK , and M = ∅ is the empty marginal. For M = (k1, . . . , kt), the set IM = Ik1 × · · · × Ikt is a
marginal table, and the canonical projection iM of the cell i onto the set IM is amarginal cell. We parameterize the population
distribution by cell probabilities p = (pi)i∈I, where pi ∈ (0, 1) and


i∈I pi = 1, and denote by P the set of all distributions

on I. A subset, M, of P is called amodel. For simplicity of exposition, we assume that V1, . . . , VK are binary, I is treated as
a sequence of cells ordered lexicographically, and a distribution P ∈ P is addressed by its parameter, p.

A graphical model is a set of probability distributions, whose association structure can be identified with a graph with
vertices V = {1, . . . , K}, where each vertex i is associated with a random variable Vi. In the following, we will identify each
vertex with its associated random variable. The absence of an edge between two vertices means that the corresponding
randomvariables satisfy some (conditional) independence relation. A detailed description of graphicalmodels for discrete as
well as for multivariate normal distributions can be found in Edwards (2000), among others. In the sequel, we only consider
undirected graphical models and DAG models.

A graphical model identified with an undirected graph (also called a graphical log-linear model in the discrete setting) is a
set of probability distributions onV that satisfy the local undirectedMarkov property: Every node is conditionally independent
of its non-neighbors given its neighbors. In the discrete case, such models are a sublcass of hierarchical log-linear models. A
graphicalmodel identifiedwith a directed acyclic graph, aDAGmodel, is a set of probability distributions onV that satisfy the
directed Markov property: Every node is conditionally independent of its non-descendants given its parents. A distribution
that satisfies the Markov property with respect to a graph is calledMarkov to it.
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