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a b s t r a c t

Under flexible distributional assumptions, the adjusted quasi-maximum likelihood
(adqml) estimator for mixed regressive, spatial autoregressive model is studied in this
paper. The proposed estimation method accommodates the extra uncertainty introduced
by the unknown regression coefficients. Moreover, the explicit expressions of theoreti-
cal/feasible second-order-bias of the adqml estimator are derived and the difference be-
tween them is investigated. The feasible second-order-bias corrected adqml estimator is
then designed accordingly for small sample setting. Extensive simulation studies are con-
ducted under both normal and non-normal situations, showing that the quasi-maximum
likelihood (qml) estimator suffers from large biaswhen the sample size is relatively small in
comparison to the number of regression coefficients and such bias can be effectively elim-
inated by the proposed adqml estimation method. The use of the method is then demon-
strated in the analysis of the Neighborhood Crimes Data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mixed regressive, spatial autoregressive (mrsar) model is widely used in geostatistics, spatial econometrics, regional
science and urban economics (Lee, 2004; Anselin, 2010). Earlier studies about parameter estimation and computational
problem can be found in Ord (1975) and Anselin (1988). Moreover, the large sample properties of the quasi-maximum like-
lihood (qml) estimator were studied in Lee (2004) where the estimator is derived from a hypothetical normal likelihood but
the errors (disturbances) in themodel are not truly normally distributed. Other estimation and hypothesis testing problems
were studied in Kelejian and Prucha (1999, 2001) and Lee (2007), among others. Themodelwas further developed by Lee and
Yu (2010), Baltagi et al. (2012) and Millo (2014), where the spatial panel model and random effects model were considered.

Following Anselin (1988) and Lee (2004), the mrsarmodel is defined as

Yn = Xnβ + ρWnYn + Vn, (1)

where n is the total number of spatial units, Yn = (y1, . . . , yn)T is the n×1 observable responses vector, Xn is the n×kmatrix
of regressors,Wn is a specified constant spatial weight matrix with elements {wij, i, j = 1, . . . , n} representing the ‘‘degrees
of possible interaction’’ of location j on location i andwii = 0 (Ord, 1975), Vn = (v1, . . . , vn)

T is the n-dimensional vector of
random errors (disturbances) with zero mean. The autoregressive coefficient ρ is the scaling parameter which captures the
‘‘interaction’’ between yi and the weighted average of the neighbors yj (i.e. spatial lag).
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Let Sn(ρ) = (In − ρWn), if Vn ∼ N(0n×1, σ
2In), then the log-likelihood function of ξ = (βT, ρ, σ 2)T given Yn is

Ln(ξ) = −
n log(2πσ 2)

2
+ log det Sn(ρ)−

∥Sn(ρ)Yn − Xnβ∥
2
2

2σ 2
, (2)

where ∥a∥2
2 = aTa for vector a. When Vn is not truly normally distributed, Ln(ξ) is still adopted as the criterion function and

is termed as the log quasi-likelihood function (Lee, 2004). The resulting estimator by maximizing this log quasi-likelihood
function is referred to as the quasi-maximum likelihood (qml) estimator. Lee (2004) showed that under certain regularity
conditions the qml estimator has important asymptotic properties (for example the n1/2-consistency, asymptotic normality
and efficiency when model is correctly specified). Essentially, the autoregressive coefficient ρ plays a central role in the
spatial data analysis. However, the regression coefficients vector β and ρ, σ 2 are ‘‘tied up’’ together and therefore the
uncertainty caused by estimating β will be introduced to the estimation procedure of ρ and σ 2 and leads to specific bias.
Such bias becomes apparentwhen the number of regression coefficients k is large in comparisonwith n and some literatures
term this phenomenon as ‘‘degrees of freedom loss’’ (Harville, 1977; Jiang, 2007). Please refer Corollary 2 and Simulations 1
and 2 for more details.

The deficiency caused by ‘‘degrees of freedom loss’’ can be effectively relieved by adjusting the concentrated or profile
likelihood/score function (Harville, 1977; Durban and Currie, 2000; Jiang, 2007). The resulting estimator sometimes is
termed as restricted maximum likelihood (reml) estimator and such estimator has been studied in different literatures
(see Jiang, 2007 and the references therein for details). However, in the existing studies for reml estimator, the major
research focus is on developing the corresponding large sample properties and these studies are usually based on specific
distributional assumptions (Cressie and Lahiri, 1993; Jiang, 2007). In fact, in some situations it is necessary to consider the
small sample properties of the estimators (for example in Section 4.2, the sample size n = 49).

Focusing on the small sample properties of ml estimator for pure spatial autoregressive model, Bao and Ullah (2007)
studied its second-order-bias and mean square error, where no exogenous regressors are involved and Vn is assumed to
be normally distributed. Moreover, Bao (2013) studied the explicit form of finite sample bias (up to second-order) of qml
estimators inmrsarmodel and corrected the second-order-bias directly based on the original full score function. However,
Bao’s formulation essentially is based on qml-type score function and thus the ‘‘degrees of freedom loss’’ effect will impose
difficulties when different components of qml estimators have different convergence rates (see the discussion in Section
3 of Bao, 2013 for details). Moreover, Bao’s bias expression involves high dimensional matrix manipulation and thus it is
difficult to study its analytical properties (Bao, 2013; Yang, 2014). Recently, Yang (2014) proposed a general method to
evaluate the second/third-order-bias via semi-parametric bootstrap. The method is flexible and does not require the closed
form of bias. However, in some situations the explicit form of the bias is also of research interest. The reason is that such
expression allows us to calculate the bias over the parameter space, which can provide a valuable source of information
(Bao, 2013). Moreover, based on the explicit bias expression, one can design the corresponding bias corrected estimator in
a computationally attractive way, which can be used conveniently in the situation where many models are involved (e.g. in
model comparison and model averaging). As such, it is necessary to adjust the existing qml-type formulation appropriately
to address these problems and investigate the corresponding large/small sample properties analytically, especially when
the complete distribution of Vn is unknown.

Under flexible distributional assumptions (only basic moment assumptions on Vn are imposed) we will handle these
aforementioned concerns in this paper. Current study has two contributions. First, under a straightforward framework,
we provide the expression of an adjusted qml (adqml) estimator to overcome the ‘‘degrees of freedom loss’’ caused by
estimating β . Second, focusing on the small sample setting, the explicit form of second-order-bias of adqml estimator is
derived and the corresponding properties are assessed analytically. The rest of the paper is arranged as follows: Section 2
provides the formulation of adqml estimator and the large sample properties of the adqml estimator are investigated in the
light of the results given by Lee (2004). The explicit expression of small sample bias (up to second-order) of the adqml
estimator, the corresponding bias corrected estimator and its analytical properties are studied in Section 3. Simulation
studies are conducted in Section 4 to assess the performance of the proposed methods in finite sample settings and the use
of the methods are demonstrated in the analysis of the Neighborhood Crimes Data. The last section provides the concluding
discussions and some possible further research directions. Proofs are provided in the Appendix.

2. Formulation of ADQML estimator

It is clear that qml estimators are obtained by solving

1
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 = 0(k+2)×1. (3)
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