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a b s t r a c t

Approximate Maximum Likelihood Estimation (AMLE) is a simple and general method
recently proposed for approximating MLEs without evaluating the likelihood function.
The only requirement is the ability to simulate the model to be estimated. Thus, the
method is quite appealing for spatial models because it does not require evaluation of
the normalizing constant, which is often computationally intractable. An AMLE-based
algorithm for parameter estimation of the autologisticmodel is proposed. The impact of the
numerical choice of the input parameters of the algorithm is studied bymeans of extensive
simulation experiments, and the outcomes are compared to existing approaches. AMLE is
much more precise, in terms of Mean-Square-Error, with respect to Maximum pseudo-
likelihood, and comparable to ML-type methods. Although the computing time is non-
negligible, the implementation is straightforward and the convergence conditions areweak
in most practically relevant cases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Point estimation of spatial models is well known to be a difficult issue. One general reason is that, from a probabilistic
point of view, a spatial model is a random field, typically characterized by a complex dependence structure, of which
only a single realization is available for estimation. More specifically, what makes estimation overly complicated is the
computational intractability of the normalizing constant of the joint density, even for moderate lattice sizes. This problem
is particularly serious for Maximum Likelihood Estimation (MLE) procedures, as the normalization constant depends on the
parameters of the model, and thus cannot be ignored in the maximization of the likelihood function.

On the other hand, the conditional distributions at single sites, given values at neighboring locations, usually admit simple
representations. Exploiting this idea, Besag (1975) developed the so-calledMaximum Pseudo-Likelihood Estimation (MPLE)
method, which is still very popular in practical applications and is now usually considered within the context of composite
likelihood (Varin et al., 2011).

MPLE is the earliest and simplest approach to estimation of the parameters of the most important model for spatially
dependent binary random variables, i.e. the autologistic model. As will be made clear in Section 2, MPLE is based on the
pseudo-likelihood function, defined by the product of the conditional distributions at all locations given the values at
neighboring locations. To obtain the estimators, the pseudo-likelihood is maximized with respect to the parameters as if it
were a likelihood, i.e. by means of standard logistic regression estimation techniques. However, the two functions coincide
exactly if the observations at different locations are independent, a condition that is only satisfied in trivial cases. As a result,
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MPLEs are consistent and asymptotically normal (Geman and Graffigne, 1987; Comets, 1992; Guyon and Künsch, 1992) but
not efficient, with a loss of efficiency positively related to the (absolute) value of the spatial dependence parameter.

Given that the difficulties are mostly caused by the normalization constant, research has focused on methods of
evaluating this quantity, usually by approximating it. The pioneering work by Ogata and Tanemura (1984) develops
various techniques for approximating the likelihood function. Moyeed and Baddeley (1991) use an iterative stochastic
approximation approach. Geyer and Thompson (1992) (see also Zheng and Zhu, 2008 and Hughes et al., 2011) introduce
a Monte Carlo maximum likelihood approach that maximizes numerically an approximation of the likelihood function.
Huffer andWu (1998) employMarkov ChainMonte Carlomethods. Gu and Zhu (2001) computeMLEs by combiningMarkov
Chain Monte Carlo and stochastic approximation methods. Huang and Ogata (2002) propose a generalization of Maximum
Pseudo-Likelihood. Friel and Pettitt (2004) develop a method for exact MLE of the autologistic model that is simulation-
free for rectangular lattices with smallest dimension not exceeding 10 and can be extended to larger sizes by means of
Monte Carlo techniques. Finally,Wang and Zheng (2013) use expectation–maximization pseudo-likelihood andMonte Carlo
expectation–maximization likelihood.

Recently, MLE for intractable likelihoods (see Murray et al., 2006 for a useful classification) has received some attention
in the literature, mostly because various simulation-based approaches allow the approximation of the likelihood in these
setups (Cox and Kartsonaki, 2012). In this paper we propose to apply the Approximate Maximum Likelihood Estimation
(AMLE) method developed by Rubio and Johansen (2013) to the autologistic model. In short, AMLE exploits the potential
of Approximate Bayesian Computation (ABC; Pritchard et al., 1999; Beaumont et al., 2002) for likelihood maximization.
In a Bayesian setup, ABC produces a sample approximation to the posterior distribution, whose mode is the approximate
Maximum A Posteriori (MAP) estimate. Under the parameterization of interest and with a uniform prior, the MAP estimate
coincides with the MLE. The most appealing feature of AMLE is inherited from ABC: it allows one to obtain estimators
(actually MLEs) without performing a formal maximization of the likelihood function. It is worth noting that Geyer and
Thompson (1992)’s Monte Carlo maximum likelihood approach, though based on simulation, is quite different in that,
unlike AMLE, it requires the evaluation of an approximation of the likelihood function. Similar considerations hold for the
approximated maximum likelihood estimators recently proposed by Feizjavadian and Hashemi (2015).

This work is, to best of our knowledge, the first application of AMLE in the field of spatial statistics. It is also the first
time AMLE is based on a non-i.i.d. sample from the approximated posterior. Although the theory does not require an i.i.d.
sample (Rubio and Johansen, 2013, p. 1636), it is of interest to analyze the performance of the algorithm in this framework.
Hence,we study via simulation the properties of AMLE applied to the autologisticmodel, across various lattice sizes, and give
insights into the choice of the basic components as well as the numerical values of the input parameters of the algorithm.

There are two main reasons why AMLE is the ideal candidate for computing MLEs of the autologistic model. First, as no
likelihood evaluation is required, it allows one to bypass the problem of computing the normalizing constant. Second, the
theory of AMLE is especially elegant and effective when ABC can be based on sufficient statistics. Whereas in most typical
applications of ABC sufficient statistics are not available or difficult to compute and finding alternative summary statistics
may not be straightforward, for the autologistic model sufficient statistics are readily available. Moreover, provided we can
sample data from the model of interest for any value of its parameters, it can be applied to other spatial models with no
major modification.

The approach proposed in this paper, besides being approximately efficient (as the estimators are approximate MLEs) is
easily implemented and has the distinctive advantage of not suffering from the curse of dimensionality. As a matter of fact,
themethodworkswell even for very large dimensions: if the simulation of the autologisticmodel is based on theMetropolis
algorithm, which generates in a sequential manner a single random variable for each location, the only limit is themachine’s
physicalmemory. The two last features are non-negligible strengthswith respect to existing approaches, often characterized
by involved implementation and/or quickly deteriorating performances for large lattice sizes.

The rest of this paper is organized as follows: Section 2 reviews the autologistic model, Section 3 introduces the AMLE
methodology and develops its application to the autologistic model, Section 4 presents first the results of extensive Monte
Carlo experiments aiming at a comparison of AMLE, MLE and MPLE in terms of Mean Squared Error (MSE) and then a real-
data application. Finally, Section 5 concludes.

2. The autologistic model

By spatial model we mean a statistical model for a spatial pattern of data y = (yi ∈ A ⊂ Rs, i = 1, . . . , K ,
where Rs is the s-dimensional Euclidean space) having density

f (y|θ) =
e−Q (y;θ)

Z(θ)
, (1)

where Q (y; θ) is the energy function, which measures the interaction between the yis. The normalizing constant is Z(θ) =
AK e−Q (y;θ)µ(dy), where µ denotes a suitable base measure—typically an appropriate version of either counting measure

in the discrete case or Lebesgue measure in the continuous case. Note that one can construct joint distributions such as (1),
as well as more complex joint distributions containing covariates and directional dependences, from specified conditionals
(see, for example, Hughes et al., 2011).
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