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a b s t r a c t

An exact algorithm for computing the estimates of regression coefficients given by the least
trimmed squares method is presented. The algorithmworks under very weak assumptions
and has polynomial complexity. Simulations show that in the case of two or three explana-
tory variables, the presented algorithm is often faster than the exact algorithms based on a
branch-and-bound strategywhose complexity is not known. The idea behind the algorithm
is based on a theoretical analysis of the respective objective function, which is also given.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In general, linear regression analysis is concerned with problems of the following type. One random variable Y , called a
response variable, is supposed to fit the linear regressionmodel Y = xTβ0

+e, where x ∈ Rp is a (column) vector of explanatory
variables (random or otherwise), β0

∈ Rp is a vector of regression coefficients, and e is an error term. The aim of regression
analysis is to estimate β0 using the knowledge of nmeasurements of Y and x. These measurements are denoted as a vector
Y = (y1, . . . , yn)T and as a design matrix

X =


x11 x21 . . . xp1
x12 x22 . . . xp2
...

...
...

x1n x2n . . . xpn

 . (1)

The vector xi stands for the transposition of the ith row of the matrix X.
The best-known estimate of β0 is the estimate given by the (ordinary) least squares method (the OLS estimate)

β̂
(OLS,n)

= (XTX)−1XTY (2)

which is the projection of Y into the linear envelope of the columns of X. Unfortunately, the OLS estimate was shown to
be very sensitive with respect to data contamination of many types (see Rousseeuw and Leroy, 1987 for details). Therefore,
other estimates that are less sensitive or, in otherwords,more robust were introduced. One such estimate is the least trimmed
squares (LTS) estimate proposed by Rousseeuw (1984).
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The OLS estimate (2) is obtained as a minimum of the OLS objective function (OLS-OF) defined as a sum of squares of
residuals ri(β) = yi − xTi β, i.e., the OLS-OF reads

OF (OLS,X,Y)(β) =

n
i=1

(yi − xTi β)2. (3)

The LTSmethod is based on the fact that the contaminating data points typically lay outside themain bulk of data points and
hence have larger residuals. To obtain amore robust estimate of the regression coefficients, we ignore (trim) some portion of
the data points with the largest residuals. Formally, the LTS estimate is defined as a minimum of the LTS objective function
(LTS-OF)

OF (LTS,n,h)(β) =

h
i=1

r2(i)(β), (4)

where h is a parameter that determines how many, namely, n − h, data points are to be trimmed and r2(i)(β) stands for the
ith smallest squared residuum at β. Because it is not reasonable to ignore more than half of the data points, h usually takes
values between n/2 and n.

As presented below, there exists a straightforward algorithm that always produces the exact value of the LTS estimate,
but it requires

 n
h


computations of OLS estimates for h non-trimmed data points. Because this algorithm is too exhaustive,

other, faster algorithms were introduced to provide the estimations.
Most of these algorithms are probabilistic, i.e., it is not certainwhether theywill return the exact value of the LTS estimate.

Two types of probabilistic algorithms exist that may be described, using terminology from Hawkins and Olive (1999), as
algorithms for determiningβ satisfying theweak and strong necessary condition, respectively.Moreover,β satisfies theweak
necessary condition if and only if it is a point of a local minimum of the LTS-OF (see Theorem 7). Algorithms that determine
β satisfying the weak necessary condition have been independently proposed several times. The first such algorithm was
proposed by Víšek (1996), and its modification can be found in Víšek (2000). Another algorithm of this type was introduced
along with the notion of weak necessary condition by Hawkins and Olive (1999), and a version for large data sets was
described in Rousseeuw and Van Driessen (1999). For the strong necessary condition, the situation is simple because there
is only one representative algorithm: the Feasible Solution Algorithm by Hawkins (1994).

Exact algorithms are presented in Agulló (2001); Hofmann et al. (2010). They are based on the branch-and-bound strat-
egy employed to reduce the number

 n
h


of h-element data subsets for which the OLS estimate must be computed to obtain

the exact LTS estimate. The simulation results show that the branch-and-bound strategy is very effective and that the reduc-
tion in the average-case complexity is significant. However, the branch-and-bound strategy, in general, does not lower the
worst-case complexity, which remains proportional to

 n
h


.We use a different strategy to reduce the number of OLS estimate

evaluations: we prove that to find the exact LTS estimate, one must compute at most 2p


n
p+1

 
p

[p/2]


OLS estimates.

Because we are studying an algorithm that solves the problem of minimising the LTS-OF, we can do away with all of the
statistical background and formulate the problem as the following optimisation problem:

Problem 1. Find the LTS estimate

β̂
(LTS,n,h)

= argmin
β∈Rp

h
i=1

r2(i)(β), (5)

where n > p ≥ 1, Y = (y1, . . . , yn)T , X = (x1, . . . , xn)T is a matrix from Rn,p, and h is an integer such that p ≤ h ≤ n. The
data for which the problem is defined is denoted by D = {(yi, xTi ) | i ∈ {1, . . . , n}}.

Prior to the introduction of the exact algorithm, we need to study the LTS-OF because the algorithm is based on some
of its properties. Having described these properties, we first propose a one-dimensional version of the algorithm, which is
convenient for demonstrating the principle of our algorithm. The general case is given afterward.

2. Objective function of the LTS estimate

2.1. Discrete version of LTS-OF

For each β ∈ Rp, only h data points with least squared residuals appear in (4). Every such h-element subset of the data
set D can be unambiguously determined by the 0 − 1 vectorw = (w1, . . . , wn)T , where wi

= 1 if (yi, xTi ) is an element of
this subset and wi

= 0 otherwise — in this sense, we speak about a subset w. For any element of the set of all such vectors

Q (n,h)
= {w ∈ Rn

|wi
∈ {0, 1}, i ∈ {1, . . . , n}, w1

+ · · · + wn
= h}, (6)

we define two sets

Iw = {k ∈ {1, . . . , n} | wk
= 1}, and Ow = {k ∈ {1, . . . , n} | wk

= 0}. (7)
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