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a b s t r a c t

Based on a semiparametric Bayesian framework, a joint-quantile regression method is de-
veloped for analyzing clustered data, where random effects are included to accommodate
the intra-cluster dependence. Instead of posing any parametric distributional assumptions
on the random errors, the proposed method approximates the central density by linearly
interpolating the conditional quantile functions of the response at multiple quantiles and
estimates the tail densities by adopting extreme value theory. Through joint-quantilemod-
eling, the proposed algorithm can yield the joint posterior distribution of quantile coeffi-
cients at multiple quantiles and meanwhile avoid the quantile crossing issue. The finite
sample performance of the proposed method is assessed through a simulation study and
the analysis of an apnea duration data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustered data are commonly encountered in many areas of applications, for instance in medical studies with repeated
measurements from the same individual and in educational studies with test scores of students in the same class. The key
feature of clustered data is that measurements from the same cluster often have some common characteristics and thus
tend to be correlated. One commonly usedmodel-based analysis for analyzing clustered continuous data is the linear mixed
model (Laird and Ware, 1982), where random effects are included to account for the within-cluster dependence.

Most linear mixed model analyses for clustered data also assume that both the random effects and random errors
are normally distributed with constant variances. Such assumptions imply that the covariates affect only the location of
the response distribution and thus cannot accommodate population heterogeneity. However, in some applications, the
covariatesmay have different impacts at different locations of the response distribution. For instance, in a birthweight study,
Abrevaya and Dahl (2008) found that some covariates such as the gender of the baby and the mother’s prenatal-care visits
have different effects at the lower and upper quantiles of the infant birth weight distribution. By focusing on the conditional
quantiles, quantile regression (Koenker and Bassett, 1978) offers an alternative tool that can automatically capture the
heterogeneity in covariate effects at different quantiles of the response distributionwithoutmodeling theheteroscedasticity.

Existing work for quantile regression with mixed effects is limited. The main challenges are that quantile regression
usually does not make any parametric distributional assumptions, and unlike mean, quantiles are not additive, that is,
quantiles of a sum of two random variables are often not the sum of their quantiles. To bypass these challenges, some
researchers analyzed clustered data by consideringmarginal quantile regressionmodels that treat the sumof randomeffects
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and random errors as a unit and focus on the covariate effects averaged over clusters; see for instance, Jung (1996), Wei and
He (2006), Wang (2009), Mu and Wei (2009), Tang and Leng (2011), and Fu and Wang (2012).

For a conditional quantile regression model with a random intercept, Koenker (2004) proposed a regularization method,
where a L1 penalty is introduced to shrink the randomeffects towards a common value. Several authors proposed parametric
or semiparametric Bayesian approaches for quantile regression with random effects. Geraci and Bottai (2007), Yuan and Yin
(2010), Wang (2012) and Geraci and Bottai (2014) extended the asymmetric Laplace distribution idea in Yu and Moyeed
(2001) for linear quantile regression to quantile regression with mixed effects, where the conditional distribution of the
response is assumed to follow an asymmetric Laplace distribution. Instead of posing a parametric likelihood, Reich et al.
(2010) proposed to model the likelihood nonparametrically by an infinite mixture of quantile-restricted two-component
Gaussian mixtures and to accommodate error heteroscedasticity by specifying its form parametrically. Yang and He (2012)
proposed the empirical likelihood as a working likelihood for Bayesian quantile regression for independent data and this
method was extended to clustered data by Kim and Yang (2011). One commonality of these existing Bayesian methods is
that the analysis (and modeling) is carried out at a single quantile level separately. Such separate analyses have two major
limitations. First, the resulting estimated conditional quantiles are not guaranteed to be monotonically increasing in the
quantile level and thus quantile crossing may be encountered. Second, for the single-quantile-analysis methods (e.g. Geraci
and Bottai (2007), Yuan and Yin (2010), Geraci and Bottai (2014) and Reich et al. (2010)), the sampling distribution of the
response at one quantile level is usually different from that at a different quantile level, and such inconsistency of likelihood
makes it difficult to carry out inter-quantile analysis.

Using a semiparametric Bayesian framework,we propose a joint-quantile estimationmethod for quantile regressionwith
randomeffects. Joint-quantile Bayesian analysiswas also considered in Reich et al. (2011) for spatial data,where the quantile
functions are modeled using basis functions, and in Tokdar and Kadane (2012) for independent data, where the quantile
functions are modeled through logistic transformations of a smooth Gaussian process. Instead of making any parametric
distributional assumptions on the random errors, we assume that the conditional quantiles of the response given covariates
and random effects are linear. We propose to approximate the likelihood by linearly interpolating the quantile functions
at multiple central quantiles and estimate the tail densities by adopting extreme value theory. A Metropolis-within-Gibbs
algorithm is proposed to update fixed and random effects. With joint-quantile modeling, the proposed algorithm can avoid
the quantile crossing problem, and yield the joint posterior distribution of quantile coefficients at multiple quantiles.
Through simulation studies, we demonstrate that by approximating the likelihood through information-sharing across
quantiles, the proposedmethod leads tomore efficientmultiple-quantile estimation than existingmethods in finite samples.

2. The proposed method

2.1. Model setup

Suppose that we observe the clustered data {(yij, xij, zij), i = 1, . . . , n, j = 1, . . . , ni}, where yij is the response, and xij
and zij are respectively the p- and q-dimensional covariate vectors associated with cluster i for the jth subject (or measuring
time). We assume the following conditional quantile regression model

Qτ (Yij|xij, zij, bi) = xTijβτ + zTijbi, 0 < τ < 1, (2.1)

where Qτ (Yij|xij, zij, bi) is the τ th conditional quantile of the response given covariates and the random cluster effects bi,
βτ is a p × 1 vector of fixed effects, zij is a q × 1 covariate vector associated with the cluster-specific random effects bi.
By including the random effects bi, the conditional quantile regression model (2.1) captures the cluster-specific effects of
covariates on the conditional quantile of the response distribution. The fixed effect βτ is allowed to vary with the quantile

level but we assume that the random effects bi are the same across all quantile levels and that bi
i.i.d.
∼ N(0, Σ).

Instead of making any parametric assumptions on the conditional distribution of Yij, we assume in model (2.1) that the
conditional quantile functions are linear for τ ∈ (0, 1). Under this global linearity assumption, we propose a Bayesian
approach based on an approximate likelihood for regression at multiple quantiles for clustered data. The idea of the
approximate likelihood is to estimate the conditional density of Yij by linearly interpolating the conditional quantiles
Qτ (Yij|xij, bi) for a sequence of central quantiles τ , and to estimate the tail density by using extreme value theory.

Before presenting the proposed procedure for clustered data, we first introduce the proposed approximate likelihood
method for quantile regression with independent data.

2.2. Approximate likelihood for independent data

Let {(yi, xi), i = 1, . . . , n} be a random sample of (Y ,X), where Y is the response variable and X is the p-dimensional
design vector with the first element being one. Suppose the following linear quantile regression model holds for any
τ ∈ (0, 1),

Qτ (Y |X = x) = xTβτ . (2.2)
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