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a b s t r a c t

To enhance the efficiency of regression parameter estimation by modeling the correlation
structure of correlated binary error terms in quantile regression with repeated measure-
ments, we propose a Gaussian pseudolikelihood approach for estimating correlation pa-
rameters and selecting the most appropriate working correlation matrix simultaneously.
The induced smoothing method is applied to estimate the covariance of the regression pa-
rameter estimates, which can bypass density estimation of the errors. Extensive numerical
studies indicate that the proposed method performs well in selecting an accurate corre-
lation structure and improving regression parameter estimation efficiency. The proposed
method is further illustrated by analyzing a dental dataset.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One characteristic of longitudinal data is that the measurements collected from the same subject are correlated (Diggle
et al., 2002). To account for the correlations, Liang and Zeger (1986) developed the well-known generalized estimating
equations (GEE) approach by incorporating a working correlation matrix. The GEE approach assures consistency of
regression parameter estimators even when the correlation structure is misspecified. Widely used correlation structures
include exchangeable, MA(1), and AR(1).

Quantile regression has also become a powerful alternative technique for analyzing repeated measurements, partly due
to its flexibility and ability to describe the entire conditional distribution of a response variable (Koenker and D’Orey, 1987;
Koenker, 2005). However,modeling the correlation in quantile regression for repeatedmeasurements is challenging. A naive
approach is to simply assume an independence working model (Chen et al., 2004; Yin and Cai, 2005; Wang and Zhu, 2011).
This approach is simple and has some desirable properties but it may result in a great efficiency loss of parameter estimators
when a high correlation exists (Tang and Leng, 2011; Fu and Wang, 2012; Leng and Zhang, 2014).

To improve the parameter estimates in quantile regression for repeated measurements, Jung (1996) introduced the
quasi-likelihood method for median regression, which requires specifying and estimating a correlation matrix. Koenker
(2004) considered a random effects model and carried out statistical inferences based on penalized L1-statistics. Tang and
Leng (2011) proposed a novel approach to incorporate the within-subject correlation. However, this approach requires
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specifying the conditional mean model. Fu and Wang (2012) presented a combination of between-subject and within-
subject estimating functions under an exchangeable correlation structure assumption. Leng and Zhang (2014) combined sets
of estimating functions based on distinct working correlationmatrix by the quadratic inference functionmethod to produce
more efficient estimates. However, the parameter estimates derived fromcombined estimating functions are not guaranteed
to perform as well as those derived from estimating equations with an accurate correlation structure (Westgate, 2014).

White (1961) and Crowder (1985) introduced the Gaussian estimation procedure which uses the Gaussian likelihood
without assuming that the data are normally distributed. This method has good properties and has been investigated for
mean regression with longitudinal data (Crowder, 2001; Wang and Zhao, 2007; Carey and Wang, 2011; Zhang and Paul,
2013). In this paper, we utilize the Gaussian pseudolikelihood approach to simultaneously estimate correlation parameters
and select a working correlation structure for the correlated binary error terms in quantile regression with repeated
measurements. This is achieved by estimating parameters and calculating the corresponding Gaussian pseudolikelihood for
all the plausible candidate working correlation models. If one model is dominant based on the Gaussian pseudolikelihood
criterion, the correlation structure and parameter estimates obtained from this procedure can probably be trusted for
presentation. The proposedmethod is easy to implement. As demonstrated by the extensive simulation studies, the selected
correlation structure by the proposed method is closest to the true structure in the sense that the corresponding estimates
have the smallest mean squared errors. Furthermore, the induced smoothing method (Brown and Wang, 2005) is used to
estimate the asymptotic covariance matrix of regression parameter estimates, which bypasses density function estimation
of the errors and greatly reduces computational costs arising from other intensive resampling methods.

The rest of the paper is organized as follows: Section 2 presents the Gaussian pseudolikelihood approach. Extensive nu-
merical studies are carried out in Section 3. Section 4 illustrates the use of the proposed method using a dental dataset.
Section 5 presents conclusions.

2. Gaussian pseudolikelihood approach

Suppose that yi = (yi1, . . . , yini)
T are measurements collected at times (ti1, . . . , tini) for the ith subject, where i =

1, . . . ,m. Let Xi = (xi1, . . . , xini)
T be the corresponding covariate vector, where xik is a p×1 vector. Assume that the 100τ th

percentile of yik is xTikβτ , that is Qτ (yik|xik) = xTikβτ , where βτ is an unknown parametric vector. Suppose that measurements
from different subjects are independent, and those from the same subject are dependent. Let ϵik = yik − xTikβτ , which is a
continuous error term satisfying p(ϵik ≤ 0) = τ and with an unspecified density function fik(·). What is of interest is to find
an efficient estimate of βτ for a particular τ .

Under an independence working model assumption, we can estimate βτ by minimizing the following objective function

Lτ (β) =

m
i=1

ni
k=1

ρτ (yik − xTikβ), (1)

where ρτ (u) = u[τ − I(u ≤ 0)], and I(·) is an indicator function (Koenker and Bassett, 1978). Koenker and D’Orey (1987)
developed an efficient algorithm to optimize Lτ (β), which is available in the statistical software R (package quantreg).

2.1. Gaussian estimation

Define Zik = I(yik ≤ xTikβ) and let Zi = (Zi1, . . . , Zini)
T, hence Zi is a correlated binary vector. Define µi = E(Zi) =

(µi1, . . . , µini)
T. The variance of Zik is µik(1 − µik). Define Ai = diag(µi1(1 − µi1), . . . , µini(1 − µini)). Suppose that

Vi = A1/2
i Ri(α)A

1/2
i is a working covariance matrix and α is a q-dimension parameter vector. The working Gaussian log-

likelihood for (Z1, . . . , Zm) is

l(α, β) = −
1
2

m
i=1


log(|2πVi|)+ (Zi − µi)

TV−1
i (Zi − µi)


.

The score function for correlation parameter α has the lth component

∂ l(α, β)
∂αl

=
1
2
tr


m
i=1

[V−1
i (Zi − µi)(Zi − µi)

T
− Ini ]V

−1
i
∂Vi

∂αl


.

When Vi is appropriately specified, the score functions are unbiased. However, when Vi is misspecified, the unbiasedness is
not satisfied because bias always exists when the parameter is used in a wrong family.

The regression parameter β can be estimated by the following estimating functions
m
i=1

XT
i ΛiA

−1/2
i R−1

i (α)A
−1/2
i ψi(β), (2)

where Λi = diag(fi1(0), . . . , fini(0)), Ai = diag(τ (1 − τ), . . . , τ (1 − τ)), and ψi(β) = (I(yi1 ≤ xTi1β) − τ , . . . , I(yini ≤

xTiniβ)− τ)T. Although it is possible to estimate fik(0) if some conditions for the error distributions are imposed, we will not
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