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Abstract

Themaximum-likelihood estimates of a principal component analysis on the logit or probit scale are
computed using majorization algorithms that iterate a sequence of weighted or unweighted singular
value decompositions. The relation with similar methods in item response theory, roll call analysis,
and binary choice analysis is discussed. The technique is applied to 2001 US House roll call data.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

SupposeP={pij } is ann×m binary data matrix, i.e. a matrix with elements equal to zero
or one (representing yes/no, true/false, present/absent, agree/disagree). For the moment we
suppose thatP is complete, the case in which some elements are missing is discussed in a
later section.

There are many examples of such binary data in the sciences. We give a small selection
in Table 1, many more could be added.

Many different statistical techniques have been developed to analyze data of this kind.
One important class is latent structure analysis (LSA), which includes latent class analysis,
latent trait analysis and various forms of factor analysis for binary data. Alternatively,
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Table 1
Binary data

Discipline Rows Columns

Political science Legislators Roll calls
Education Students Test items
Systematic zoology Species Characteristics
Ecology Plants Transects
Archeology Artefacts Graves
Sociology Interviewees Questions

by recoding the data as a 2m table, log-linear decompositions and other approximations
of the multivariate binary distribution become available. There are also various forms of
cluster analysis which can be applied to binary data, usually by first computing some sort
of similarity measure between rows and/or columns. And finally there are variations of
principal component analysis (PCA) specifically designed for binary data, such as multiple
correspondence analysis (MCA).

In this paper, we combine ideas of LSA, more particularly item response theory and
factor analysis of binary data, with PCA and MCA. This combination produces techniques
with results that can be interpreted both in probabilistic and in geometric terms. Moreover,
we propose algorithms that scale well, in the sense that they can be fitted efficiently to large
matrices.

Our algorithm is closely related to the logistic majorization algorithm proposed by
Groenen et al. (2003). We improve on their somewhat heuristic derivation, propose an
alternative uniform logistic majorization, and a uniform probit majorization.

2. Problem

Thebasic problemwesolve in this paper is geometric.Wewant to represent the rowsof the
data matrix as points and the columns as hyperplanes in low-dimensional Euclidean space
Rr , i.e. we want to make a drawing of our binary matrix. Rowsi are represented as pointsai
and the hyperplanes corresponding with columnsj are parametricized as vectors of slopesbj
and as scalar interceptscj . The parameterr is the dimensionality of the solution. It is usually
chosen to be equal to two, but drawings in different dimensionalities are also possible.

Thedrawing should be constructed in such away that pointsai forwhichpij=1 should be
ononesideof hyperplane(bj , cj )and thepoints forwhichpij=0shouldbeon theother side.
Or, equivalently, if we define the point setsAj1= {ai |pij = 1} andAj0= {ai |pij = 0},
the convex hulls ofAj1 andAj0 should be disjoint. Of course we want these disjoint
convex hulls for all columnsj simultaneously, and this is what makes the representation
restrictive. Depending on the context, such a representation, if possible, is known as an
inner product representation, a vector representation, or a compensatory representation. In
the multidimensional scaling literature the algebraic version of the compensatory or vector
model is usually attributed toTucker (1960), althoughCoombs (1964)reviews some earlier
work by his students and co-workers. The vector representation is most often applied to
preference rank orders, but also quite often to binary choices and paired comparisons.
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