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a b s t r a c t

The filtering problem (or the dynamic data assimilation problem) is studied for linear
and nonlinear systems with continuous state space and over discrete time steps. Filtering
approaches based on the conjugate closed skewed normal probability density function
are presented. This distribution allows additional flexibility over the usual Gaussian
approximations. With linear dynamic systems the filtering problem can be solved in
analytical form using expressions for the closed skew normal distribution. With nonlinear
dynamic systems an ensemble-based version is proposed for fitting a closed skew normal
distribution at each updating step. Numerical examples discuss various special cases of the
methods.
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1. Introduction

In this paper we consider the filtering problem under non-Gaussian and nonlinear modeling assumptions. The challenge
is to characterize the probability distribution of state variables over time given the available information. The underlying
model comes from a physical system and is represented as a set of differential or difference equations known as the
process model. At each (discrete) time step sensors measure the state variables directly or indirectly. We are interested
in assimilating these data with the knowledge imposed by the process model and all previous measurements.

The history of the filtering problem goes backmore than 50 yearswhen Kalman proposed his famous filtering solution for
linear dynamical systems in optimal control literature (Kalman, 1960). The Kalman filter (KF) has shown extremely useful
but has strict assumptions about linearity and Gaussian noise. The Extended Kalman filter (EKF) is an extension handling
nonlinearities (Jazwinsky, 1970) but if the nonlinearity of the system is high, this first order approximation diverges. Second
order EKF variants have also been proposed but they may have similar challenges. Moreover, we need to calculate the
Jacobian and Hessian of the system equations which may not be feasible. For instance, these derivative expressions are
rarely available from implicitly formulated process models or black box models.

Particle filters (PF) were proposed to handle general distributions by Monte Carlo sampling. These approaches can
approximate any distribution when the number of particles go to infinity (Doucet et al., 2001). In practical systems there
are limits to the available computation time, and consequently the number of particles/samples which can be used. Albeit
popular in many applications, particle filters may suffer from sample degeneracy when the system dimension increases.

The ensemble Kalman filter (EnKF) was introduced as a sampling representation for very high dimensional systems, see
e.g. Evensen (2003), Sakov and Oke (2008) and Evensen (2009). It incorporates the nonlinear process model, whereas a
Gaussian approximation is used for the updating with respect to new measurements. This approach has been very useful
for practical applications, but the filter solution may be biased or can underestimate uncertainty. Gaussian mixture filters
have been suggested to get benefits from both PF and EnKF, see e.g. Stordal et al. (2010) and Rezaie and Eidsvik (2012).

∗ Corresponding author.
E-mail addresses: rezaie@math.ntnu.no (J. Rezaie), joeid@math.ntnu.no (J. Eidsvik).

http://dx.doi.org/10.1016/j.csda.2014.01.014
0167-9473/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2014.01.014
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2014.01.014&domain=pdf
mailto:rezaie@math.ntnu.no
mailto:joeid@math.ntnu.no
http://dx.doi.org/10.1016/j.csda.2014.01.014


2 J. Rezaie, J. Eidsvik / Computational Statistics and Data Analysis 75 (2014) 1–14

Fig. 1. Graphical representation of state variables xt , at discrete time points t = 0, 1, . . . and observations dt , t = 1, 2, . . . . The process model is assumed
to follow a Markov structure. The data are assumed to be conditionally independent, given the state variable at the indicated time steps. The filtering
problem characterizes the distribution of states over time, given all currently available data.

In this paper we introduce a new filter which captures skewness in the filtering solution. It is easy to implement and
some of the mentioned filters are special cases of the suggested approaches. The filter is based on the closed skew normal
(CSN) distribution which allows analytical solutions under certain modeling assumptions. This family of filters is named the
closed skew normal Kalman filter (CSNKF).

The skew normal (SN) and CSN distribution are extensions of the normal distribution, see e.g. Azzalini and Dalla-
Valle (1996) and Gupta et al. (2004). Skewness is incorporated by adding new parameters to the traditional Gaussian
formulation (Genton, 2004). The CSN distribution has some useful properties similar to those of the Gaussian distribution
such as conjugacy under linear conditioning. Thus, we can extend the mentioned Gaussian-based filters by introducing the
CSN distribution into the filtering problem.

A skewed version of the KF for linear systemswas proposed byNaveau et al. (2005). They defined the filter in an extended
state spacemodel. Our proposed algorithmswork for linear and nonlinear systems in a unified settingwith structure similar
to the KF and EnKF. Computational aspects are studied to handle the ensemble-based fitting and challenges related to the
skewness dimension over many filtering time steps are discussed for all the KF variants.

In Section 2 we outline the modeling assumptions and present the CSN distribution. In Section 3 we present the CSNKF
under linear modeling assumptions. In Section 4 we similarly present the CSNKF under nonlinear modeling assumptions. In
Section 5 we illustrate the methodologies using numeric examples.

2. Background

2.1. Notation

Throughout this paper we use xt ∈ ℜ
nx×1 as a nx dimensional distinction of interest at time t = 1, . . . , T . We

assume that the dynamics of these state variables are represented by a set of difference equations with additive noise
xt = f (xt−1) + ηt , where f (·) : ℜ

nx×1
−→ ℜ

nx×1 is a general linear or nonlinear function and ηt ∈ ℜ
nx×1 is independent

additive process noisewith knowndistribution. If the systemdynamics are linear,we use the notation xt = Fxt−1+ηt , where
F ∈ ℜ

nx×nx .
The notation x ∼ π (·) is used to show that variable x is distributed according to the probability density function (pdf)

π(·). The Markov assumption about the states results in π (xt |xt−1, xt−2, . . . x0) = π (xt |xt−1), and π (xT , xT−1, . . . x0) =

π (xT |xT−1) · · · π (x1|x0) π (x0), where π (x0) is the initial condition distribution.
The observation equation is dt = h (xt) + ϵt , where dt ∈ ℜ

nd×1 and ϵt is the independent additive observation noise
with known distribution. Thus, we assume that the data at different times are mutually independent given the state. The
likelihood for the data is π(dt |xt). The notation Dt = [d1, d2, . . . dt ] is used for the collection of data from time 1 to t . Here
we assume a linear or weakly nonlinear relationship between the observations and the state variables. Thus, we linearize
the measurement equation using a first order Taylor series expansion to get h (xt) ≈ h0 + Hxt , where H ∈ ℜ

nd×nx . Fig. 1
illustrates themodeling assumptions graphically. The presented filteringmethods extend naturally to time-varying systems,
i.e. when f , F , h or H change over time.

2.2. The filtering problem

Our goal is to assess the distribution of the state vector given all the currently available observations, i.e. the pdfπ (xt |Dt)
at each time index t . A recursive formulation gives the exact solution to this filtering problem by the following two steps.
First, derive the one-step predictive pdf:

π(xt |Dt−1) =


π (xt |xt−1) π (xt−1|Dt−1) dxt−1, (1)
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