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a b s t r a c t

The paper proposes a joint convex penalty for estimating the Gaussian inverse covariance
matrix. A proximal gradient method is developed to solve the resulting optimization prob-
lem with more than one penalty constraints. The analysis shows that imposing a single
constraint is not enough and the estimator can be improved by a trade-off between two
convex penalties. The developed framework can be extended to solve wide arrays of con-
strained convex optimization problems. A simulation study is carried out to compare the
performance of the proposed method to graphical lasso and the SPICE estimate of the in-
verse covariance matrix.

Published by Elsevier B.V.

1. Introduction

Recent surge in the use of electronic and digital technology has created vast amount of high dimensional data whose
analysis demands advanced statistical tools and computational techniques. Examples are biological data of gene expression
measurement, FMRI scanned images of human brain andNetflix data. In these datasets, one often have very fewobservations
as compared to the number of variables and therefore the choice of standard statistical methods becomes inappropriate for
making valid inference. Thus the concept of parsimony becomes very crucial. In many applications the problem of interest
is often estimating the dependence structure of the data where the underlying probability distribution of observations is
either fixed (static) or evolving over time (i.e. time varying or dynamic). In the static framework, a common assumption
is that the data are independently and identically distributed (i.i.d.), whereas in dynamic setting, the distribution of data
evolves over time and hence the i.i.d. assumption no longer remains valid. Here we focus on the static framework.

1.1. Background

The covariance selection was introduced by Dempster (1972) where the basic idea was to (i) introduce parsimony in
parameter model fitting and (ii) exploit the powerful yet elegant theory of exponential family as a tool of practical data
analysis. The computational ease along with attractive statistical features of Gaussian distributionmakes it a popular choice
for most of the application problems. Estimation of the inverse covariance matrix is important in a number of statistical
analyses including:
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• Gaussian Graphical Modeling: In Gaussian graphical modeling, a zero entry of an element in the inverse of a covariance
matrix corresponds to conditional independence between the variables.

• Linear or Quadratic Discriminant Analysis: When the features are assumed to have multivariate Gaussian density, the
resulting discriminant rule requires an estimate of the inverse covariance matrix.

• Principal Component Analysis (PCA): In multivariate high dimensional data it is often desirable to transform the high-
dimensional feature space to a lower dimension without loosing much information. The covariance matrix method is a
popular method for PCA estimates.

Several approaches have been suggested to address the estimation problem of the inverse of a covariance matrix. These
approaches are either based on regularized estimation of the inverse of the covariance matrix (Banerjee et al., 2008; Fried-
man et al., 2007; Bickel and Levina, 2008; Rothman et al., 2008) or regularized high dimensional regression (Meinshausen
and Bühlmann, 2006; Zhou et al., in press). Among earlier developments, an exact maximization of ℓ1 penalized log likeli-
hood using interior point methods was suggested for estimating the inverse covariance matrix (Dahl et al., 2008; Yuan and
Lin, 2007; Banerjee et al., 2008). Let X = (X1, X2, . . . , Xp)

T be a p-variate random vector from multivariate Gaussian distri-
butionNp(µ, Σ).µ is themean vector andΣ is the positive definite covariancematrix. Let X1, X2, . . . , Xn be n independent
copies of X . The sample covariance matrix is given by

S = (1/n)
n

i=1

(X i
− X̄)(X i

− X̄)T (1.1)

where X iT is the transpose of X i and X̄ is the mean vector of sample observations.
Let Ŵ be the estimate of inverse of the covariance matrix Σ . Banerjee et al. (2008) have considered the following

determinant maximization (MAXDET) (Vandenberghe and Boyd, 2004) problem:

Ŵ = argmax
X≻0

{log(det(X)) − tr(SX) − λ∥X∥1} (1.2)

where tr(S) is the trace of the matrix S, ∥X∥1 is the ℓ1 norm and defined as the sum of absolute values of elements of
matrix X and λ is the regularization parameter which controls the sparsity structure of the estimated inverse covariance
matrix. Another approach to solve the above optimization problem is based on high dimensional regression (Yuan, 2009;
Meinshausen and Bühlmann, 2006; Wainwright et al., 2006). For Gaussian graphical models, the main motivation behind
the regression approach is the explicit relation between the elements of the inverse covariancematrix and coefficients of the
predictor variables (Yuan, 2009). Meinshausen and Bühlmann (2006) follow this approach and estimate the neighborhood
structure of the variables by fitting ℓ1 regularized regression to each of the variables on the remaining set of variables as
predictors. They also have established the consistency of their estimates under certain assumptions of sparsity and stability.

Friedman et al. (2007) introduced graphical lasso which has better computational power compared to earlier methods.
In graphical lasso, the algorithm obtains the lasso estimate of each row/column of the covariance matrix given the sample
covariance matrix. It uses the block co-ordinate descent algorithm for optimization of the objective function.

Rothman et al. (2008) has proposed the sparse permutation invariance covariance estimate (SPICE). This method uses
Cholesky decomposition of the inverse covariance matrix and a quadratic approximation of the likelihood function to
simplify the problem as finding the minimum of each univariate parameter in the objective function in closed form. The
objective function is invariant and consequently the estimator remains permutation invariant. The method uses the cyclical
co-ordinate descent algorithm to do the optimization.

In another approach, Sheena and Gupta (2003) have proposed a constrainedmaximum likelihood estimator with restric-
tions on the lower or upper bound of the eigenvalues. Thismethod focuses on only one of the two ends of the eigenspectrum
and thus the resulting estimator does not correct for the overestimation of the large eigenvalues and underestimation of the
small eigenvalues simultaneously. Consequently their approach does not address the distortion of the entire eigenspectrum
especially in small sample sizes. Won et al. (2012) consider a maximum likelihood estimation of the covariance matrix with
condition number constraint. The condition number of a matrix is defined as the ratio of largest to smallest eigenvalue of
the matrix. However this approach itself requires an estimation of condition number.

To control the distortion of eigenspectrum of the covariancematrix, we consider a joint penalty of sum of singular values
(trace norm) in addition to the ℓ1 norm. By minimizing the joint penalty function of ℓ1 and the trace norm, the resulting
estimated inverse covariance matrix is sparse as well as singular values of the corresponding covariance matrix are more
centered than the observed sample covariance matrix. Rolfs et al. (2012) consider the estimation of the inverse covariance
matrixwhich can be seen as a particular case of the proposed approach by setting-off the trace normpenalty. A single penalty
of the ℓ1 norm is appropriate when the underlying true inverse covariance matrix is sparse. However it does not control the
distortion in eigenspectrum of the inverse covariancematrix. Controlling the eigenspectrum is an intuitive way to get a well
conditioned estimate of the inverse covariance matrix.

1.2. Contribution

We propose a joint convex penalty of ℓ1 and the trace norm to the inverse covariance matrix estimation. The estimator
thus obtained is simultaneously sparse and gives better performance than graphical lasso for small sample size in terms of
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