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a b s t r a c t

Two fast group subset selection (GSS) algorithms for the linear regression model are pro-
posed in this paper. GSS finds the best combinations of groups up to a specified size
minimising the residual sum of squares. This imposes an l0 constraint on the regression
coefficients in a group context. It is a combinatorial optimisation problem with NP com-
plexity. To make the exhaustive search very efficient, the GSS algorithms are built on QR
decomposition and branch-and-bound techniques. They are suitable formiddle scale prob-
lems where finding the most accurate solution is essential. In the application motivating
this research, it is natural to require that the coefficients of some of the variables within
groups satisfy some constraints (e.g. non-negativity). Therefore the GSS algorithms (op-
tionally) calculate the model coefficient estimates during the exhaustive search in order
to screen combinations that do not meet the constraints. The faster of the two GSS algo-
rithms is compared to an extension to the original group Lasso, called the constrained group
Lasso (CGL), which is proposed to handle convex constraints and to remove orthogonality
requirements on the variables within each group. CGL is a convex relaxation of the GSS
problem and hence more straightforward to solve. Although CGL is inferior to GSS in terms
of group selection accuracy, it is a fast approximation to GSS if the optimal regularisation
parameter can be determined efficiently and, in some cases, it may serve as a screening
procedure to reduce the number of groups.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In some regression problems it is natural to fit ‘‘groups’’ of explanatory variables at the same time. For example, in a birth
weight data study (Yuan and Lin, 2006, Section 8), the authors used third-order polynomials to account for the non-linear
effects of both mother’s age and weight. Another example (Jacob and Obozinski, 2009, Section 9.4) is pathway analysis
using biologically meaningful gene groups instead of individual genes. In this paper, we focus on a mineral spectroscopy
application which motivated our research.

Spectroscopy is a fast surrogate for chemistry. The shortwave infrared (SWIR) reflectance spectrum of a mixture of min-
erals can bewell approximated (after suitable transformation) by a linear combination of the spectra of its pure components.
The coefficients in the linear model represent (in a semi-quantitative sense) the relative amounts of the correspondingmin-
eral, so it makes sense to constrain them to be non-negative. Any single spectrum of a mixture contains only an identifiably
small subset of the minerals in the library. For instance, our SWIR library contains multiple samples of 60 materials (mostly
minerals). However, we and our specialist geologist collaborators have never observed a spectroscopic mixture in the SWIR
of more than four materials. The most important objective in this problem is, not to be able to predict spectra, but to identify
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correctly whichminerals are in themixture. A secondary objective is to estimate as accurately as possible the relative amounts
of the minerals in the mixture.

Fig. 1 shows the 12 spectra in each of the Kaolinite_WX andGypsum classes in our SWIR library after background removal
and scaling. This will be further discussed in Section 5.1. Typically, we use the first principal component (PC) of the scaled
and background removed spectra in a class to represent the whole class in a linear model. However, as can be seen in Fig. 1,
the relative variationwithin the Gypsum class ismuch greater than thatwithin the Kaolinite_WX class. This suggests that for
classes such as Gypsum, one PC cannot adequately describe the whole class. Therefore it is useful to model some materials
withmultiple PC’s to capture their greater variation. This results in the requirement of fitting several PC’s together as a group
to represent a material in the model. Furthermore, when the number of groups is large, it is often that only a small number
of groups is needed to model the response variable, and so the question of how to choose the ‘‘best’’ groups arises.

We will consider group subset selection in the linear regression context. Formally, we assume that there are G groups of
D-dimensional variables, xgi, i = 1, . . . ,Ng , g = 1, . . . ,G (where Ng is the number of variables in group g and


g Ng = N),

and a D-dimensional response variable y. Further, there is a subset of the G groups of (small) sizeM (M ≤ G), AM ∈ {1, . . . ,
G}, whose linear combination is a good model for y. This can be represented as the linear model

y =


g∈AM

Ng
i=1

βgixgi + ϵ, (1.1)

where ϵ represents the error. In regard to estimation of βgi, the regression coefficient for variable xgi, we consider ordinary
least squares (OLS) minimising the following residual sum of squares (RSS)

RSS =
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2

. (1.2)

Group subset selection (GSS) for OLS is defined as choosing AM and coefficients βgi to minimise (1.2) for givenM .
At various points in the paper, it will be convenient to consider the non-group version of (1.2), i.e. given M , choose the

subset of M variables AM and coefficients, βi, i ∈ AM to minimise

RSS =
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2

2

. (1.3)

We will henceforth call minimisation of (1.3) variable subset selection (VSS). If we collect all the regression coefficients in a
vector β, the condition of |AM | = M is actually equivalent to ∥β∥l0 = M where ∥x∥l0 is the number of nonzero entries in
the vector x.

Both VSS and GSS are combinatorial optimisation problems and therefore NP hard to solve. Of course, another
‘‘complication’’ of GSS is how to chooseM , i.e.model selection. This issuewill be discussed briefly later in this paper.However
the main focus will be on efficient methods of minimising (1.2), given M .

Approximation of (1.2) has been considered by Yuan and Lin (2006). Generalising the Lasso (Tibshirani, 1996), they de-
velop the group Lasso (GL) as a convex relaxation of (1.2). This selects groups via the use of l1/l2 regularisation on regression
coefficients replacing the stringent l0. GL transforms the difficult combinatorial optimisation problem to an easier convex
programming at the cost of introducing a bias due to the regularisation. This may not be a serious problem in prediction
problems. However, in some applications such as mineral spectroscopy, where the central problem is correct identification
rather than prediction, the bias will often decrease classification accuracy. For example Guo and Berman (2012) demon-
strated that, in the variable selection context, direct minimisation of (1.3) usually has lower error rates in the identification
of mineral composition than the Lasso does.

Because GL inherits the regularisation bias of the Lasso, we decided to generalise VSS to GSS. There are three primary
aspects to the generalisation: (i) the obvious extension of variables to groups, (ii) optimisation of the code, which makes it
significantly faster in certain situations, and (iii) the optional inclusion of some constraints on some of the coefficients.

The paper is structured as follows. Section 2 consists of a brief literature review of subset selection algorithms in the non-
group context. Two fast GSS algorithms optimising (1.2) directly are presented in Section 3. We compare GSS with the GL
algorithmof Yuan and Lin (2006)which is the best known regularised group selection algorithm. However, GL has two short-
comings: (i) it requires variables within each group to be orthogonal and (ii) it does not allow optional convex constraints on
the coefficients of some variables. Therefore, in Section 4, we present an extension of GL, called the constrained group Lasso
(CGL),which overcomes these problems. GSS, VSS andCGL are compared in terms of accuracy and speed in Section 5,with the
aid of the spectroscopic unmixing problem. The work is summarised and possible future research is discussed in Section 6.

2. Literature review

In the non-group (VSS) context, a number of algorithms have been proposed to minimise (1.3) either exactly or approx-
imately. Miller’s fast variable selection algorithm (Miller, 2002) finds the exact minimum efficiently by utilising QR decom-
position and branch-and-bound techniques. It can solve moderately sized variable subset selection problems in reasonable
time. For example, choosing the best 4 out of 100 variables can be solved in seconds on a modern personal computer. A
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