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a b s t r a c t

Over the past decade much statistical research has been carried out to develop models
for correlated survival data; however, methods for model selection are still very limited.
A stochastic search variable selection (SSVS) approach under the proportional hazards
mixed-effects model (PHMM) is developed. The SSVS method has previously been applied
to linear and generalized linear mixedmodels, and to the proportional hazards model with
high dimensional data. Because the method has mainly been developed for hierarchical
normalmixture distributions, it operates on the linear predictor under the Cox typemodels.
The PHMM naturally incorporates the normal distribution via the random effects, which
enables SSVS to efficiently search through the candidate variable space. The approach was
evaluated through simulation, and applied to a multi-center lung cancer clinical trial data
set, forwhich the variable selection problemwas previously debated upon in the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Correlated survival data arise in various practical applications including multi-center clinical trials, genetic studies, and
recurrent events. In many such applications the data consist of clusters and observations within the clusters. A number of
statistical methods have been developed over the last decade to analyze such data. The proportional hazards mixed-effects
model (PHMM) was proposed by Ripatti and Palmgren (2000) and Vaida and Xu (2000) to model clustered survival data,
which allows cluster specific random effects of arbitrary covariates. Suppose that Tij is the random variable representing the
failure time of individual j in cluster i. The PHMM assumes that the hazard function of Tij follows

λij(t) = λ0(t) exp

x′

ijβ + z′

ijbi

, (1)

where β is a p×1 vector of fixed effects, bi ∼ N(0,6) is a q×1 vector of cluster specific random effects, xij is a p×1 vector
of covariates, and zij is typically a q × 1 subvector of xij, except that zij is allowed to contain an element of ‘1’ for a random
cluster effect on the baseline hazard.

Under model (1) various inference procedures have been proposed in the literature. Ripatti and Palmgren (2000)
considered a penalized partial likelihood approach, which is similar to the penalized quasi-likelihood (PQL) under the
generalized linear mixed models. Vaida and Xu (2000) proposed a nonparametric maximum likelihood estimator (NPMLE),
obtained using a Monte Carlo EM algorithm. Cortiñas-Abrahantes et al. (2007) considered a Laplace EM algorithm for the
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NPMLE. A comprehensive comparison of these methods can be found in Gamst et al. (2009). Although it is reasonably clear
to see the advantages and limitations of the different inference procedures, only very recently attention has started to focus
on model selection. Under model (1) this concerns the selection of fixed as well as random effects.

Xu et al. (2009) considered the likelihood ratio test under model (1), as well as a profile Akaike information criterion
for model selection. Donohue et al. (2011) developed a conditional Akaike information criterion, where the focus is on the
estimation of the fixed as well as the random effects. Under the special case of frailty models where zij is restricted to
either 0 or 1, Fan and Li (2002) considered selection of the fixed effects. Gray (1995) and Commenges and Andersen (1995)
developed score tests for no random effects in the frailty model, although it is also possible to generalize the score tests to
test for no random effects of additional covariates under model (1) via stratification (Gray, 2006). Dunson and Chen (2004)
also considered selection of random effects under the gamma frailtymodel, using a Bayesian approach. Interestingly Dunson
and Chen (2004) arrived at a different conclusion from the score tests of Gray (1995), on the data from amulti-center clinical
trial in lung cancer, which will be further discussed in this paper.

Stochastic search variable selection (George andMcCulloch, 1993, SSVS) is an approachbased on theBayesianhierarchical
normal mixture setup under a regression model, where latent variables are used to indicate the inclusion or exclusion of a
potential predictor. It uses Gibbs sampler to sample from a multinomial distribution on the set of possible subset choices,
and the promising subsets of predictors are identified as those with high posterior probabilities. As will be described below,
SSVS avoids the overwhelming problem of calculating the posterior probabilities of all 2p subsets, and is computationally
fast and efficient. The SSVS method has been extended to linear and generalized linear mixed models (Chen and Dunson,
2003; Kinney and Dunson, 2007), and to survival models (Lee and Mallick, 2004). Because of its ability to select among a
larger number of potential predictors, it has been applied to high dimensional data including genomics and other complex
disease risk factor studies (Beattie et al., 2002; Lee et al., 2003; Swartz et al., 2008; Lin and Huang, 2008).

In the following we develop the SSVS under the general PHMM (1), for selection of both fixed and random effects of
arbitrary covariates. There has been no Bayesian approach to this problem in the literature, which has the advantage of
subsequent model averaging that can take into account model uncertainty and selection bias. In Section 3 we examine the
performance of SSVS using simulations.We apply the approach to themulti-center lung cancer clinical trial data set thatwas
previously analyzed in Gray (1995) and Dunson and Chen (2004) in Section 4. The last section contains further discussion,
and all the posterior computation details are given in the Appendix.

2. Variable selection under the PHMM

For clusters i = 1, . . . , n, and observations j = 1, . . . , ni, denote tij the observed, possibly right-censored failure time,
δij = 1 if tij is an observed failure time, and 0 otherwise. Let N be the total number of observations, that is, N =

n
i=1 ni.

Under model (1) x′

ijβ + z′

ijbi is the linear predictor, or the prognostic index, which determines the relative risk of an
individual. It is an intermediate quantity analogous to the response in a linear model, which in this case associates the
predictors with the ultimate survival outcome. Since the SSVS was initially developed for the hierarchical normal mixture
distributions, Lee and Mallick (2004) considered adding a small random quantity ϵij ∼ N(0, σ 2) to the linear predictor. The
resulting model is then

λij(t) = λ0(t) exp(x′

ijβ + z′

ijbi + ϵij). (2)

The ϵij’s may be viewed as an individual heterogeneity term which can improve the fit of the model to the data (O’Quigley
and Stare, 2002). But the consideration here is mainly computational, because it simplifies the posterior computation as
described below and allows the Gibbs sampler to efficiently search through the model space. We should still consider data
as generated under model (1), while model (2) is a working model; this is also reflected in our simulations later: while data
were generated undermodel (1), we follow the approach described below to do variable selection and estimation.We should
mention that the identifiability of model (2) is similar to the individual frailty models considered in Kosorok et al. (2001),
and can also be more intuitively seen from the equivalent transformation model formulation: h(Tij) = −x′

ijβ − z′

ijbi + eij,
where eij = e0ij − ϵij, e0ij has a fixed, known extreme value distribution with Var(e0ij) = 1.645, and h(t) = logΛ0(t)where
Λ0(t) =

 t
0 λ0(s)ds is the cumulative baseline hazard function.

For notational purposes, let Xi = (xi1, xi2, . . . , xini)
′, Zi = (zi1, zi2, . . . , zini)

′, and ϵi = (ϵi1, ϵi2, . . . , ϵini)
′ for i =

1, 2, . . . , n. Also let X = (X′

1,X
′

2, . . . ,X
′
n)

′, Z = diag{Z1, Z2, . . . , Zn}, b = (b′

1, b
′

2, . . . , b
′
n)

′, and ϵ = (ϵ′1, ϵ
′

2, . . . , ϵ
′
n)

′.
Finally let Wij = x′

ijβ + z′

ijbi + ϵij, W = (W11,W12, . . . ,Wnnn)
′, t = (t11, . . . , tnnn)

′, δ = (δ11, . . . , δnnn)
′, and Y = (t, δ)

which denotes the observed survival data. Then we have:

W = Xβ + Zb + ϵ, ϵ ∼ N(0, σ 2IN), b ∼ N(0, In ⊗ 6), (3)

where 6 is positive semi-definite as it may include variance components that should be excluded from the final selected
models,


denotes the Kronecker product, and In denotes an n × n identity matrix.

The SSVS uses latent binary variables γ = (γ1, . . . , γp)
′ to indicate the inclusion or exclusion of a fixed effect: γk = 1 if

βk ≠ 0 and 0 otherwise, k = 1, . . . , p. Given γ , let βγ consist of all nonzero elements of β, and let Xγ be the columns
of X corresponding to the elements of βγ . After specifying the prior distribution for γ , βγ and other parameters, one
uses the observed data likelihood and Markov chain Monte Carlo (MCMC) to sample from the posterior distribution of
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