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a b s t r a c t

Two classes of multiplicative bias correction (‘‘MBC’’) methods are applied to density es-
timation with support on [0, ∞). It is demonstrated that under sufficient smoothness of
the true density, each MBC technique reduces the order of magnitude in bias, whereas
the order of magnitude in variance remains unchanged. Accordingly, the mean integrated
squared error of each MBC estimator achieves a faster convergence rate of O


n−8/9


when

best implemented, where n is the sample size. Furthermore, MBC estimators always gener-
ate nonnegative estimates by construction. Plug-in smoothing parameter choice rules for
the estimators are proposed, and their finite sample performance is examined via Monte
Carlo simulations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hirukawa (2010) applied two classes of fully nonparametric multiplicative bias correction (‘‘MBC’’) methods originally
proposed for density estimation using symmetric kernels to estimate the density with support on [0, 1] via nonstandard
smoothing by the Beta kernel (Chen, 1999). This paper extends the analysis to estimating the densitywith support on [0, ∞)
by asymmetric kernels (Chen, 2000; Jin and Kawczak, 2003; Scaillet, 2004). Let Kj(x,b) (·) be the asymmetric kernel indexed
by j that depends on a design point x > 0 and a smoothing parameter b > 0. Given a random sample {Xi}

n
i=1 drawn from

a univariate distribution with density f that has support on [0, ∞), the density estimator using asymmetric kernel j can be
expressed as

f̂j,b (x) =
1
n

n
i=1

Kj(x,b) (Xi) . (1)

Throughout, the kernel j refers to one of the Gamma (‘‘G’’), Modified Gamma (‘‘MG’’), Inverse Gaussian (‘‘IG’’), Reciprocal
Inverse Gaussian (‘‘RIG’’), Log-Normal (‘‘LN’’),2and Birnbaum–Saunders (‘‘BS’’) kernels. Functional forms of these kernels are
presented in Table 1. Asymmetric kernels have originally emerged as an alternative to boundary correction methods; see,
for instance, Karunamuni and Alberts (2005) for a brief review of the methods. Indeed, because all kernels in Table 1 have
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1 Tel.: +81 3 3244 1241; fax: +81 3 3270 7084.
2 Our definition of the LN kernel slightly differs from the original one in Jin and Kawczak (2003). This definition ensures that the leading variance of the

density estimator (1) becomes n−1b−1/2f (x) /

2
√

πx

for a design point x > 0 so that x/b → ∞ as b → 0.
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Table 1
Functional forms of asymmetric kernels.

Kernel (j) Functional form (u ≥ 0)

G (Chen, 2000) KG(x/b+1,b) (u) = ux/b exp (−u/b) /

bx/b+1Γ (x/b + 1)


.

MG (Chen, 2000) KMG(ρb(x),b) (u) = uρb(x)−1 exp (−u/b) /

bρb(x)Γ {ρb (x)}


,

where ρb (x) =


x/b for x ≥ 2b
(1/4) (x/b)2 + 1 for x ∈ [0, 2b) .

IG (Scaillet, 2004) KIG(x,1/b) (u) =
1

√

2πbu3
exp


−

1
2bx

 u
x − 2 +

x
u


.

RIG (Scaillet, 2004) KRIG(1/(x−b),1/b) (u) =
1

√
2πbu

exp

−

x−b
2b

 u
x−b − 2 +

x−b
u


.

LN (Jin and Kawczak, 2003) KLN(log x,b) (u) =
1

u
√
2πb

exp

−

(log u−log x)2

2b


.

BS (Jin and Kawczak, 2003) KBS(b1/2,x) (u) =
1

2x
√
2πb

 x
u

1/2
+

 x
u

3/2 exp

−

1
2b

 u
x − 2 +

x
u


.

support on [0, ∞), they are free of boundary bias near the origin. Besides, the kernels havemany other appealing properties,
including locally adaptive smoothing via changing their shapes and ‘shrinking variance’ with the position of x.3

Below we formally define two MBC estimators built on the density estimator (1). Throughout (1) is called the bias-
uncorrected (‘‘BU’’) estimator to distinguish it from MBC estimators. In the spirit of Terrell and Scott (1980, abbreviated
as ‘‘TS’’ hereafter), the first class of MBC techniques constructs a multiplicative combination of two density estimators
employing the same kernel but different smoothing parameters. Let f̂j,b/c (x) be the density estimator using asymmetric
kernel j and smoothing parameter b/c , where c ∈ (0, 1) is some predetermined constant that does not depend on the
design point x. Then, the TS-MBC asymmetric kernel density estimator can be defined as

f̃TS,j (x) =


f̂j,b (x)

 1
1−c


f̂j,b/c (x)

−
c

1−c
. (2)

On the other hand, the second class of MBC techniques due to Jones et al. (1995, abbreviated as ‘‘JLN’’ hereafter) utilizes a
single smoothing parameter b. In light of the identity f (x) = f̂j,b (x)


f (x) /f̂j,b (x)


, the JLN-MBC asymmetric kernel density

estimator can be defined as

f̃JLN,j (x) = f̂j,b (x)


1
n

n
i=1

Kj(x,b) (Xi)

f̂j,b (Xi)


. (3)

Recognize that the term inside the bracket is a natural nonparametric estimator of the bias-correction term f (x) /f̂j,b (x).
Also observe that both f̃TS,j (x) and f̃JLN,j (x) are free of boundary bias and always generate nonnegative density estimates
everywhere by construction.

Following the convention, this paper refers to the position of x as ‘‘interior x’’ if x/b → ∞, and ‘‘boundary x’’ if x/b → κ
for some constant κ > 0, as b → 0. As demonstrated shortly, under sufficient differentiability of f , bias convergence of each
MBC estimator is accelerated from O (b) to O


b2


, whereas the order of magnitude in variance remains unchanged from the

one for (1), i.e. it is still O


nb1/2
−1


for interior x. Accordingly, the mean integrated squared error (‘‘MISE’’) of each MBC

estimator for interior x takes the form of O

b4 + n−1b−1/2


. Therefore, when best implemented, each estimator can achieve

the convergence rate ofO

n−8/9


inMISE, which is faster thanO


n−4/5


, theMISE-optimal convergence ratewithin the class

of nonnegative kernel estimators (Stone, 1980). Moreover, to implement MBC estimators employing the G and MG kernels,
this paper proposes plug-in methods of choosing the smoothing parameter bwith gamma density used as a reference.

A few articles other than Hirukawa (2010) have investigated bias reduction methods for density estimation via
nonstandard smoothing when the support has a boundary. Hagmann and Scaillet (2007) and Gustafsson et al. (2009) study
semi-parametric MBC methods for density estimation with support on [0, ∞). Each method employs asymmetric kernels
at the bias correction step after initial parametric density estimation. Unlike MBC methods in this paper, their approaches
do not improve the bias convergence in order of magnitude. Moreover, Leblanc (2010) explores a bias reduction method for
estimating the density with support on [0, 1] using Bernstein polynomials, and establishes acceleration in bias convergence.
However, he adopts an additive bias correction, and thus the bias-corrected estimator does not always generate nonnegative
estimates unlike the one in Hirukawa (2010).

The remainder of this paper is organized as follows. Section 2 presents asymptotic properties of twoMBC estimators. Sec-
tion 3 proposes plug-inmethods of choosing the smoothing parameter b forMBC estimators using the G andMGkernels, and
conductsMonte Carlo simulations to check finite sample properties of the estimators. Section 4 applies twoMBC techniques

3 It is an open question whether the asymmetric kernels studied here may fit with nonparametric analysis of functional or infinite-dimensional data by
Ferraty and Vieu (2006). While they consider the asymmetric kernels that take the form of K ((X − x) /b) for a data point X , design point x, and smoothing
parameter b, none of the kernels in Table 1 can be expressed in this form.
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