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a b s t r a c t

In Balabdaoui, Rufibach, and Wellner (2009), pointwise asymptotic theory was developed
for the nonparametric maximum likelihood estimator of a log-concave density. Here, the
practical aspects of their results are explored. Namely, the theory is used to develop
pointwise confidence intervals for the true log-concave density. To do this, the quantiles of
the limiting process are estimated and various ways of estimating the nuisance parameter
appearing in the limit are studied. The finite sample size behavior of these estimated
confidence intervals is then studied via a simulation study of the empirical coverage
probabilities.

Crown Copyright© 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

The nonparametric maximum likelihood estimator (MLE) of a log-concave density has received much attention in the
statistics literature of late. It has been studied, for example, in Walther (2002), Dümbgen and Rufibach (2009, 2011), Chang
and Walther (2007), Chen and Samworth (2013), Cule et al. (2010) and Cule and Samworth (2010). For an overview, we
recommend the review article of Walther (2009). The appeal of this estimator is that, unlike a kernel-density approach, it
does not require a choice of bandwidth. Indeed, the log-concave MLE is not only fully automatic, but also automatically
locally adaptive. Furthermore, the simulations in Chen and Samworth (2013, pp. 12–13) show that the log-concave MLE
outperforms the kernel-density estimator for larger sample sizes, when the true density is log-concave. For smaller sample
sizes, an (automatic) smoothed version of the MLE continues to have improved performance over the kernel-density
estimator. (Chen and Samworth, 2013 consider the density on Rd with d = 2, 3.)

Here, we focus on the MLE of a log-concave density on R. That is, let f0 denote a log-concave density on R and suppose
that we observe X1, . . . , Xn independent and identically distributed samples from f0. Let F denote the class of log-concave
densities on R. Then the nonparametric MLE of a log-concave density on R is defined as

fn = argmax
f∈F

n
i=1

log f (Xi).

Dümbgen and Rufibach (2009) show that this estimator exists and is unique, and also study its consistency. Additional
results on consistency can also be found in Pal et al. (2007) and Cule and Samworth (2010). The estimator may be calculated
using the active set algorithm, and this has been implemented in the R package logcondens (Dümbgen and Rufibach, 2006,
2011). Pointwise asymptotic theory forfn was developed in Balabdaoui et al. (2009).
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Suppose that the true density f0 is log-concave with f0(x0) > 0 and ϕ0 = log f0 is twice continuously differentiable in a
neighborhood of x0 with ϕ′′

0 (x0) ≠ 0. One of the main results of Balabdaoui et al. (2009) is that

n2/5 fn(x0)− f0(x0)


⇒


f 30 (x0)|ϕ

(2)
0 (x0)|

4!

1/5

C(0), (1)

where the distribution of C(0) is known (here, we describe it in Section 2). For a fixed f0, define

c2(x) =


f 30 (x)|ϕ

(2)
0 (x)|

4!

1/5

. (2)

If c2(x) is known, and qα denotes the quantile such that P(C(0) ≤ qα) = α, then the result in (1) implies thatfn(x0)−
c2(x0)
n2/5

q1−α/2, fn(x0)−
c2(x0)
n2/5

qα/2


(3)

forms an asymptotically correct 100(1 − α)% confidence interval for f0(x0). The main goal of this paper is to provide
estimators for the quantiles qα and c2(x0) so that the confidence intervals (3) may be implemented in practice, and to assess
the quality of this procedure.

In Section 2 we describe the process C(0) and provide its quantile estimates based on simulations (the simulations are
detailed in Appendix A). In Section 3 we consider estimation of the constant c2, and in Section 4 we use simulations to
understand the empirical performance of the estimated confidence intervals (3). The methods presented here have been
implemented in the R package logcondens (Dümbgen and Rufibach, 2006).

2. Quantiles of the limiting process

Let B(t), t ∈ R denote a two-sided Brownian motion. That is, B(t) = B1(t), t ≥ 0 and B(t) = B2(−t), t ≤ 0, where
B1,B2 are two independent Brownian motions with B1(0) = B2(0) = 0. Let

Y(t) =


 t

0
B(s)ds − t4, t ≥ 0 0

t
B(s)ds − t4, t < 0,

and let H be the almost surely unique process such that
1. H(t) ≤ Y(t) for all t ∈ R,
2. H′′(t) is concave,
3. H(t) = Y(t) if the slope of H′′(t) is strictly decreasing at t .

The process H thus defined exists and is unique (Balabdaoui et al., 2009, Theorem 2.1). Let C(t) = H′′(t) for all t ∈ R, then
the quantity of interest, C(0), is simply C(t) evaluated at t = 0.

The process H, or rather its close relative, was first shown to exist in Groeneboom et al. (2001a), and we refer to
Appendix A for further details. Using their approach, one could show that C(t) = limm→∞ Cm(t), where Cm is defined
as:

Cm = argmin
ϕ∈Cm

 m

−m
ϕ2(t)dt − 2

 m

−m
ϕ(t)d


B(t)− 4t3


,

where Cm denotes the class of concave functions with the restriction that ϕ(−m) = ϕ(m) = −12m2. Thus, we can think of
C(t) as the concave regression on the function −12t2 plus white noise.

Our interest here is limited to the value of C(t) at t = 0, and below we present some observed properties based
on n = 100 000 independent samples. Details on the algorithm used to generate these samples is given in Appendix A.
Fig. 1 shows the estimate of the density of C(0). Visually, two things are immediately striking: first, the density appears
to be asymmetric (right-skewed), and second, the density appears to be log-concave. We address these two questions in
Sections 2.1 and 2.2.

Moment (plus median) estimates of C(0) are given in Table 1 while quantile estimates are given in Table 2. Table 2 gives
four different quantile estimates based on
(A) the empirical distribution function,
(B) the kernel density estimate,
(C) the log-concave MLE,
(D) the normal approximation.

The last column of the table gives standard errors of the values in column (A), (see Shorack and Wellner, 1986, Example 1,
p. 639). The Gaussian approximation is given for reference only. Our simulations indicate that E[C(0)] = 0, as expected.
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