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a b s t r a c t

This paper deals with Bayesian linear quantile regression models based on a recently de-
veloped Expectation–Maximization Variable Selection (EMVS)method. By using additional
latent variables, the proposed approach enjoys enormous computational savings compared
to commonly usedMarkovChainMonte Carlo (MCMC) algorithm.Using location-scalemix-
ture representation of asymmetric Laplace distribution (ALD), we develop a rapid and effi-
cient Expectation–Maximization (EM) algorithm,which is illustratedwith several carefully
designed simulation examples. We further apply the proposed method to construct finan-
cial index tracking portfolios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, variable selection methods have attracted much attention and played an increasingly important
role in statistical research and many related fields as well, ranging from bioinformatics, ecology, economics to finance and
so on. Specifically, for high dimensional problems, such as gene selection from microarray data (Zhang et al., 2006) or
portfolio construction froma large pool of stocks (George andMcCulloch, 1997), the selected submodel usually has improved
interpretability, increased predictive ability and higher prediction speed.

Variousmethods have been developed for variable selection problems. See, for example, the lasso (Tibshirani, 1996), Lars
(Efron et al., 2004) and boosting (Bühlmann, 2006). From a Bayesian point of view, George andMcCulloch (1997) proposed a
Stochastic Search Variable Selection (SSVS) approach based on well-known Markov Chain Monte Carlo (MCMC) algorithm.
This method has been quite popular in the Bayesian literature, such as Li and Zhang (2010), Scheipl et al. (2012) and Hu
et al. (2013), but is also widely known to suffer from heavy computational burden. Yi et al. (2011) considered posterior
mode estimation in Gaussian process regression. Ročková and George (2014) proposed an Expectation–Maximization
Variable Selection (EMVS) method. In their work, EMVS is shown to be an accurate deterministic approach with enormous
computational savings, and has the potential to be a key player for variable selection problems.

Quantile regression models, on the other hand, are known as important alternatives to mean regression models, and
provide more robust estimations and complete descriptions of the underlying distribution of the response variable. They
have found numerous applications in the fields of economics, biomedicine and others (Cade and Noon, 2003; Yu et al., 2003;
Yoshida, in press). In the Bayesian context for quantile regression, Kozumi andKobayashi (2011) utilized asymmetric Laplace
distribution (ALD) for error terms as in Yu andMoyeed (2011), and proposed an efficient Gibbs sampling algorithmby using a
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location-scalemixture representation of the ALD. Subsequent Bayesianworks further extend thismethod to variousmodels,
including single-indexmodels (Hu et al., 2013), binarymodels (Benoit et al., 2013), Tobit models (Yue and Hong, 2012; Zhao
and Lian, 2015), longitudinal data models (Geraci and Bottai, 2006; Luo et al., 2012) and partial linear additive models (Hu
et al., 2015).

Various methods have been developed for Bayesian quantile regression with variable selection (Li et al., 2010). In their
work, several penalty-based regularization approaches are successfully adopted to the Bayesian context, including LASSO,
group LASSO and elastic net penalties. As an alternative, the spike-and-slab prior-based method has also gained increasing
attention, which is initially implemented with MCMC and recently developed in EM framework (Ročková and George,
2014). In this work, we will further extend it for variable selection in quantile regression problems. We demonstrate that
the location-scale mixture representation, which was used for MCMC previously, also plays a critical role in deriving the
EMVS approach for quantile regression, resulting in a fast implementation of Bayesian quantile regression. Without using
this important representation, it is not clear a priori that the EM algorithm can be efficiently implemented for estimating
quantiles. To be more specific, for any quantile level τ ∈ (0, 1), we are interested in estimating τ th conditional quantile of
the response variable, which is given by

Qyi(τ ) = α + xTi β, i = 1, . . . , n, (1)

where (xi, yi), i = 1, . . . , n are independent and identically distributed observations, yi’s are response variables, xi =
(xi1, . . . , xip)T are p-dimensional covariates, α is the intercept and β = (β1, . . . , βp) is a vector of parameters.

To enable variable selection and a fast implementation of the EM algorithm, we introduce indicator variables as in the
spike-and-slab prior in George and McCulloch (1997). As a result, the quantile regression approach proposed in this paper
has simultaneous model estimation and variable selection abilities, the latter of which is achieved based on the estimated
posterior probabilities of the indicator variables.

The remainder of the paper proceeds as follows. We formulate our Bayesian hierarchical model, including model setup
and choices of priors in Section 2. Detailed EM algorithm derivations are presented in Section 3. Section 4 reports results of
simulated examples. The proposed approach is further illustrated with a real data example in Section 5. We conclude our
work with a brief discussion in Section 6.

2. Hierarchical Bayesian modelling

2.1. Model setup

For any quantile level τ ∈ (0, 1), we are interested in estimating the quantile (1). Note α and β implicitly depend on τ .
One Bayesian approach commonly used to implement quantile regression is to write yi = α + xTi β+ εi and assume the

error εi follows an asymmetric Laplace distribution (ALD), of which the probability density function has the following form,

π(y|µ, δ) =
τ(1− τ)

δ
exp


−

1
δ
ρτ (y− µ)


,

where the quantile level τ is the skewness parameter in ALD, δ > 0 is the scale parameter,µ is the location parameter, ρτ (·)
is the check loss function defined by ρτ (y) = y(τ − I{y < 0}), and I{·} is the indicator function.

Following Kozumi and Kobayashi (2011), we employ the location-scale mixture representation of the ALD and rewrite
our model as

yi = α + xTi β + k1ei +

k2δeizi,

where k1 = 1−2τ
τ(1−τ)

, k2 = 2
τ(1−τ)

, zi ∼ N(0, 1), ei ∼ exp(1/δ) and ei is independent of zi. Here exp(1/δ) denotes the
exponential distribution with mean δ.

2.2. Prior specification

To facilitate Bayesian variable selection, we choose the well-known spike-and-slab priors for βj’s. Indicator variables,
γ = (γ1, . . . , γp)

T , are introduced such that βj = 0 if and only if γj = 0, j = 1, . . . , p.
The prior we assigned to β is,

p(β|γ, δ) = N(0p, 6β) with 6β = δ · diag(b1, b2, . . . , bp),

where bj = (1 − γj) · v0 + γj · v1 for 0 ≤ v0 ≤ v1. Even though the v0 in the spike distribution is typically set to be zero
in the literature, such as in Brown et al. (2002), Panagiotelis and Smith (2008) and Hu et al. (2015), we follow Ročková and
George (2014) and consider small but positive values for v0 to exclude unimportant nonzero effects. This approach enables
a fast EM algorithm. As suggested by Ročková and George (2014), we impose a heavy-tailed prior for v1,

p(v1) =
vb
1(1+ v1)

−a−b−2

B(a+ 1, b+ 1)
I{v1 > 0},
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