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a b s t r a c t

This paper considers the variable selection for the least absolute relative error (LARE)
model, where the dimension of model, pn, is allowed to increase with the sample size
n. Under some mild regular conditions, we establish the oracle properties, including the
consistency of model selection and the asymptotic normality for the estimator of non-zero
parameter. An adaptiveweighting scheme is considered in the regularization,which admits
the adaptive Lasso, SCAD and MCP penalties by linear approximation. The theoretical
results allow the dimension diverging at the rate pn = o(n1/2) for the consistency and
pn = o(n1/3) for the asymptotic normality. Furthermore, a practical variable selection
procedure based on least squares approximation (LSA) is studied and its oracle property
is also provided. Numerical studies are carried out to evaluate the performance of the
proposed approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following multiplicative model:

Y = exp(XTβ)ε, (1)

where Y is the response variable, X is a p-dimensional vector of covariates, β is an unknown p-vector of parameters, and ε
is random noise. Both Y and ε considered in model (1) are positive variables. When the response variable Y is a failure time,
model (1) is referred to the accelerated failure time (AFT) model, which has been widely applied in survival analysis. For
instance, under the AFT model, estimation of β has been documented in Jin et al. (2003), Huang et al. (2006), Huang and Ma
(2010), among others.

A mostly recent work regarding estimation of parameter β of model (1) is due to Chen et al. (2010), who proposed to
estimate the parameter β via minimizing the following objective function

Ln(β) =

n
i=1

yi − exp(xTi β)
yi

+ yi − exp(xTi β)
exp(xTi β)

, (2)

where (yi, xi)ni=1 are independent observations of (Y , X) of model (1). A sum of the absolute relative errors is considered in
the empirical objective function (2). Such criterion is primarily motivated by following considerations. On the one hand, it is
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more attractive to consider the relative errors than the absolute errors inmany practical applications. To name a few, Narula
and Wellington (1977) proposed an estimate by using the absolute relative errors in linear model. Makridakis et al. (1984)
studied the relative errors in the analysis of time series data. Khoshgoftaar et al. (1992) established the strong consistency
of the estimators in the case of squared relative errors and absolute relative errors, respectively, in nonlinear regression
model. Park and Stefanski (1998) considered the best mean squared relative error prediction. On the other hand, only
considering the ratio of the error relative to some target value tends to be more or less restrictive. For instance, assume
that yi takes a large value (say 50) and exp(xTi β) takes small (say 5), then when one chooses yi as the target, the relative

error is
 yi−exp(xTi β)

yi

 = 0.9, whereas, the value is magnified ten times when exp(xTi β) is viewed as the target. This causes
that using either of these two relative errors as the final loss function in the model is inadequate. In particular, the stock
buyers could regard the market price as the target value, while the stock sellers could regard the intrinsic value of a stock
as the target. Hence, a combination of these two kinds of relative errors may be preferred in certain circumstances like this
stock price data.More discussions on the choice of relative errors are referred to Ye (2007) for accountingmodeling. A natural
and reasonable tradeoff is to consider the sum of these two relative errors, which is called the least absolute relative errors
(LARE) loss, due to Chen et al. (2010). One advantage of making use of such loss function is that it is scale free or unit free.
This might be particularly useful in applying the LARE criterion to analyze the data with certain types. To see the problem
of minimizing Ln(β) in (2) more precisely, if the response comes from a log normal distribution, the minimizer behaves like
the (conditional) sample median for a large sample size (or asymptotically), whereas if the response is from a distribution
with efficient density (see Section 5.1), it is just the MLE. There are some recent works documented about the inference of
model (1) with the LARE loss in the literature. Besides Chen et al. (2010), Li et al. (2014) employed the empirical likelihood
technique to make the statistical inference and built a nonparametric version of Wilks’ theorem. Zhang and Wang (2013)
extendedmodel (1) to a partially linear multiplicative model and investigated the asymptotic results for the parametric and
nonparametric estimates using a locally weighted LARE loss function.

Instead of considering the estimation, the purpose of this paper is to study the problem of variable selection raised
by model (1). Over the past two decades, model selection has been becoming a very important problem and extensively
addressed inmodern statistics. A large body of relevant literatures regarding various regularizationmethodswere developed
for both the parametric and nonparametric models, see for example, Lasso by Tibshirani (1996), SCAD by Fan and Li (2001),
adaptive Lasso (ALasso) by Zou (2006), sparsity–smoothness penalty by Meier et al. (2009) in generalized additive models,
adaptive group Lasso by Huang et al. (2010) for nonparametric additive models, MCP by Zhang (2010) and robust adaptive
method by Fan et al. (2014a). To the best of our knowledge, most of the efforts contributed to variable selection concentrate
on the commonly encountered loss functions, such as square error loss (ℓ2) for LS (Fan and Li, 2001; Zou, 2006; Wang and
Leng, 2007), absolute error loss (ℓ1) for LAD (Wang et al., 2007), quantile loss for quantile regression (Wang et al., 2012; Fan
et al., 2014a), logistic loss in a binary classification model (Breheny and Huang, 2015). However, the variable selection for
model (1) with the LARE loss in the sense of diverging number of covariates has not been considered yet. Hence, we would
fill the gap by this paper.

The contributions of this paper can be summarized as follows. First, we develop a variable selection procedure to select
and estimate the important parameters in model (1) simultaneously. The number of parameters considered in model (1)
is allowed to grow with the sample size. This kicks off a moderate-high dimensional multiplicative data analysis, and
generalizes the results of Zhang and Wang (2013), where they assume the dimension is fixed. Second, we incorporate the
LARE loss into the empirical objective function, which is significantly distinct from other loss functions as stated previously.
Third, a general adaptive weighting scheme is studied. It allows for some folded concave penalty functions via linear
approximation. Fourth, an efficient variable selection procedure based on the least squares approximation is provided for
practical application. This generalizes the result of Wang and Leng (2007) in the sense of high dimension. The simulation
studies and real data analysis provide some empirical evidence for the correctness of the proposed approaches.

The rest of paper is organized in the following way. In Section 2, we introduce the estimation methodology and propose
a regularized estimator. In Section 3, some regular conditions are given and some asymptotic results of the estimator are
presented. In Section 4, we propose a practical variable selection procedure. The simulation studies and a real data analysis
are conducted in Section 5. We conclude the paper in Section 6. All technical proofs are relegated to the Appendix.

2. Methodology

For the ease of statement, we make some notations first. Denote by y = (y1, . . . , yn)T an n-dimensional observation
vector of response variable. Let X = (x1, . . . , xn)T = (x̃1, . . . , x̃p) be an n × p design matrix and β = (β1, . . . , βp)

T the
parameter vector. Throughout this paper, assume that X is a fixed design matrix. To enhance the accuracy of model fitting
and prediction as well as the interpretability, we make an assumption that only a small proportion of covariates contribute
to the response variable, that is sparsity, which is a common faith in the context of model selection, see Fan and Li (2001)
and Zou (2006). Suppose that the number of nonzero parameters is s. From now on, we use the subscript n to emphasize
the dependence between the dimension p and the sample size n. Thus, pn and sn are used to stand for the dimension and
sparsity of the model, respectively, whenever the context is clear.

Without loss of generality, we assume the true parameter of model (1) is β∗
= (β∗T

1 , 0
T )T with β∗

1 ∈ Rsn . This means
that only the first sn parameters are non-vanishing. Denote by the true model M∗ = supp(β∗) = {1, . . . , sn} and Mc

∗
its
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