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a b s t r a c t

A nonparametric procedure for testing the goodness of fit of a parametric density is
investigated. The test statistic is the ratio of two marginal likelihoods corresponding to a
kernel estimate and the parametric model. The marginal likelihood for the kernel estimate
is obtained by proposing a prior for the estimate’s bandwidth, and then integrating the
product of this prior and a leave-one-out kernel likelihood. Properties of the kernel-
based marginal likelihood depend importantly on the kernel used. In particular, a specific,
somewhat heavy-tailed, kernel K0 yields better performing marginal likelihood ratios than
does the popular Gaussian kernel. Monte Carlo is used to compare the power of the new
test with that of the Shapiro–Wilk test, the Kolmogorov–Smirnov test, and a recently
proposed goodness-of-fit test based on empirical likelihood ratios. Properties of these
tests are considered when testing the fit of normal and double exponential distributions.
The new test is used to establish a claim made in the astronomy literature concerning
the distribution of nebulae brightnesses in the Andromeda galaxy. Generalizations to the
multivariate case are also described.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the classical problem of testing the goodness-of-fit of a parametric model for a distribution. Our approach
is nonparametric in that our test can consistently detect virtually any departure from the null hypothesis. The proposed
test statistic is based on the ratio of two marginal likelihoods, in which the alternative ‘‘model’’ corresponds to a kernel
density estimator. There exist a number of well-known goodness-of-fit tests including Neyman’s smooth test (Neyman,
1937), the Kolmogorov–Smirnov test (Smirnov, 1944), the Anderson–Darling test (Anderson and Darling, 1954) and, for
testing normality, the Shapiro–Wilk test (Shapiro and Wilk, 1965). Additionally, several recent developments have been
made in the literature of nonparametric goodness-of-fit testing, see, e.g., Claeskens and Hjort (2004) for a goodness-of-fit
test based on nonparametric likelihood ratios, and, more recently, Vexler and Gurevich (2010) for a goodness-of-fit test
based on sample entropy and empirical likelihood ratios. The reader is also referred to the monographs of Hart (1997),
Ingster and Suslina (2003), Rayner et al. (2009) and Thas (2010) and references therein for general theory and methods in
the treatment of goodness-of-fit and lack-of-fit problems.
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Suppose that we have independent and identically distributed observations Xn = (X1, . . . , Xn), and wish to compare the
fit of two candidate models M0 and M1 for the distribution of Xi:

M0 = {f0( · |θ) : θ ∈ Θ} and M1 = {f1( · |λ) : λ ∈ Λ}, (1)
where f0 and f1 are known up to their respective parameter vectors.

The marginal likelihood m(Xn) is obtained by integrating the product of the likelihood and a prior over the parameter
space. Given prior distributionsπ0 andπ1 for θ andλ, respectively, themarginal likelihoodsm0(Xn) andm1(Xn) are given by

m0(Xn) =

 n
i=1

f0(Xi|θ)π0(θ)dθ

and

m1(Xn) =

 n
i=1

f1(Xi|λ)π1(λ)dλ.

The ratio m0(Xn)/m1(Xn) is known as a Bayes factor (see, e.g., Jeffreys, 1961 and Kass and Raftery, 1995), and represents
the ratio of the prior and posterior odds of the two models. On the other hand, it may also be used in frequentist fashion
to test the fit of one model versus another, an idea which appears to be due to Good (1957), who referred to the idea as a
Bayes/non-Bayes synthesis(compromise). Good (1967) proposed using the null distribution of a Bayes factor as a significance
criterion. An extensive review of such approaches is given by Good (1992). Recently (Aerts et al., 2004; Hart, 2009) proposed
Bayesian-motivated frequentist tests for lack of fit in the context of regression.

Our paper likewise proposes a Bayes/non-Bayes synthesis for nonparametric goodness-of-fit testing in which we use as
test statistic a marginal likelihood ratio comparing a parametric model to essentially arbitrary alternatives. The alternative
is estimated by a kernel density estimate, whose only parameter is its bandwidth. We therefore propose a prior distribution
for the bandwidth and obtain a nonparametric marginal likelihood by integrating the product of this prior and a leave-one-
out type of kernel likelihood. A traditional marginal likelihood is computed for the parametric null model. It is shown that
the proposed nonparametric goodness-of-fit test using the marginal likelihood ratio is easily computed and powerful in
detecting departures from the null hypothesis.

The remainder of the paper proceeds as follows. Our basic approach is described in Section 2. This includes how we
choose kernels andprior distributions for the bandwidth, and a statement of conditions guaranteeing that the nonparametric
marginal likelihood exists finite. Monte Carlo studies of power when testing normality and double exponentiality, and
an application of our approach to astronomy data are presented in Section 3. Extensions to multivariate distributions are
described in Section 4, and concluding remarks given in Section 5.

2. Basic approach: marginal likelihood ratio

LetXn = (X1, . . . , Xn) be a random sample of size n from an unknown probability density f . Wewish to test the following
hypotheses:

H0 : f ∈ F0 = {f0( · |θ)|θ ∈ Θ} vs. H1 : f ∉ F0, (2)
where f0( · |θ) is known up to the vector of parameters θ = (θ1, . . . , θp), which is unknown. Note that F0 is a completely
specified parametric family of distributions, e.g., the normal distribution with mean θ1 and variance θ2, θ = (θ1, θ2). The
alternative is nonparametric, in that it contains densities not in F0.

As indicated previously, our test statistic is a marginal likelihood ratio that consists of a parametric marginal likelihood
for the null model and a nonparametric marginal likelihood based on kernel density estimates for the alternative model. In
particular, we consider the following cross-validated likelihood under H1:

L(h|Xn) =

n
i=1

fi(Xi|h), fi(x|h) =
1

(n − 1)h


j≠i

K

x − Xj

h


, (3)

where h > 0 is a bandwidth and K a suitable kernel function, a popular choice of which is the Gaussian kernel, i.e., K ≡ φ,
with φ(z) = (2π)−1/2 exp


−

1
2 z

2

. The kernel estimatesfi(x|h), i = 1, . . . , n, Marron (1985) are known as cross-validated or

leave-one-out estimates, inasmuch asfi(x|h) is computedwithout Xi. It is well-known thatfi(x|h) is consistent for f (x) (Chow
et al., 1983) under mild conditions, including nh → ∞ and h → 0 as n → ∞. Typically L(h|Xn) is used as a bandwidth
selection criterion, but we use it to construct a nonparametric marginal likelihood under the alternative hypothesis H1.

Let πbw be a prior for the bandwidth h and π0 a prior for θ, both of which are assumed to be proper. Define the following
marginal likelihood ratio (MLRn) based on n observations:

MLRn ≡ MLR(Xn) =


∞

0 L(h|Xn)πbw(h)dh
Θ

Πn
i=1f0(Xi|θ)π0(θ)dθ

. (4)

As noted in the previous section, MLRn may be used in frequentist fashion to test H0. Thus, one must approximate the null
distribution of MLRn (which is not analytically available in general), and then reject H0 at level α if the observed value of
MLRn exceeds the (1 − α) percentile of the null distribution.
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