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a b s t r a c t

In analyzing correlated data or clustered data with linear or logistic mixed effects model,
one commonly assumes that the random effects follow a normal distribution with mean
zero. However, this assumption might not be appropriate in many cases. In particular,
substantial violation of normality assumptionmight potentially impact the subset selection
of variables in thesemodels. In this article, we address the problemof joint selection of both
fixed and random effects and bias control for random effects in nonparametric settings.
An efficient Bayesian variable selection is implemented using a stochastic search Gibbs
sampler to allow both fixed and random effects to be dropped effectively out of the model.
The approach is illustrated using a simulation study and a real data example.

© 2012 Published by Elsevier B.V.

1. Introduction

In longitudinal studies, logistic mixed models (Drum and McCullagh, 1993; Noortgate and Boeck, 2005) are widely used
for clustered binary data to study the relationship between the response and covariates. Generally the random effects are
incorporated to account for subject-specific variation and are routinely assumed to follow normal distribution with mean
zero. However, this assumption might not be realistic and one might question the validity of inferences of the mixed effects
when it is violated.Moreover, flexible specification for randomeffects such asmultimodal or skewnessmight provide insight
into heterogeneity and even unveil failure to include important covariates in the model. Such concern has motivated many
nonparametric approaches for the random effects. Zhang and Davidian (2001) approximated the random effects by the
seminonparametric approach of Gallant and Tauchen (1987). Further, Chen et al. (2002) extended it to the generalized
linear mixed models (GLMMs). There are also some other frequentist approaches proposed such as Lai and Shih (2003),
and Ghidey et al. (2004). Alternatively, many Bayesian nonparametric approaches using Dirichlet process (DP) (Ferguson,
1973) and DP mixtures (DPM) are also proposed. Readers can refer to Bush and MacEachern (1996), Kleinman and Ibrahim
(1998), Ishwaran and Takahara (2002), among many others. However, these methods do not address the uncertainty of
predictors to be included in the mixed effects of the model.

Typically, a random variable is included when it is expected to vary among subjects. However, a practical problem is
how to decide which predictors have coefficients varying among subjects. Standard approaches such as Akaike information
criterion (AIC), Bayesian information criterion (BIC), generalized information criterion (GIC) and Bayes factor (BF) generally
compare a fewmodels in enumeration. However, suchmethods do notworkwell when the number of potential predictors is
large. Especially, the number of possiblemodels increases exponentially with the number of predictors. For example, with l1
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fixed effects and l2 random effects, the total number of possible models is 2l1+l2 . When l1 = l2 = 10, the total number of
model is well above one million.

Unlike the linear mixed effects (LME) model (Laird and Ware, 1982), the random effects have a rather complicated
maximum likelihood form in logistic mixed models. Inference based on likelihood requires integration over the dimensions
of the random effects, which is often intractable even with simple normal distribution. With this, researchers proposed
Laplace and other approximation approaches, for example, Schall (1991), Breslow and Clayton (1993) etc. However, such
approaches may result in biased estimates for the fixed effects (Breslow and Lin, 1995; Lin and Breslow, 1996). To resolve
the difficulty, some Bayesian methods have been developed to circumvent the intense integration. Zeger and Karim (1991)
used Gibbs sampling for the random effects. McCulloch (1997) and Booth and Hobert (1999) usedMonte Carlo EM algorithm
for posterior inference.

For mixed effects models, it is desirable to accommodate uncertainty of predictors to be included in the model for
enhanced flexibility. Bayesian methods can accommodate such flexibility and avoid cumbersome integration with MCMC
algorithms. In addition, one can easily infer from the variable selections results, for example, posterior probabilities of the
mixed effects inclusion and models of the Bayesian approaches. Kuo and Mallick (1998) and George and McCulloch (1993,
1997) used the approach of Bayesian variable selection for the general linear model. Chen and Dunson (2003) used the
Cholesky decomposition for the random effects. Kinney and Dunson (2007) extended the approach to logistic mixed model.
Bondell et al. (2010) proposed a penalized joint likelihood with an adaptive penalty in joint selection of both fixed and
random effects. Ibrahim et al. (2010) usedmaximum penalized likelihood estimation for fixed and random effects selection.
However, all these approaches do not have flexible specification for the random effects. For nonparametric specification of
the uncentered random effects, the expectedmean generally is not zero and thus causes identifiability with the fixed effects.
Ultimately, bias is incurred. Cai and Dunson (2010) proposed a nonparametric random effect model without addressing the
potential bias. Though, they might take the approach by Yang and Dunson (2010), Yang et al. (2010) and Li et al. (2011) to
reduce bias. However, it is difficult for interpretation with variable selection, in particular, when the fixed effect is selected
but the corresponding random effect is not. With this, Yang (2010) used the centered Dirichlet process mixture models for
the random effects. To the author’s best knowledge, there is no method proposed for GLMMwhich addresses joint selection
of mixed effects, flexible prior specification and bias control simultaneously.

In this article, we address variable selection for logistic mixed model with nonparametric random effects. The article is
organized as follows: Section 2 describes the logistic mixed models. Section 3 describes the approach of joint selection
of fixed and random effects and the posterior inference. Sections 4 and 5 presents simulation and real data example
respectively. A final discussion is provided to conclude the article.

2. Methodology

2.1. General description

Suppose there are n subjects in a study and each subject has ni repeated observations for i = 1, . . . , n. Let Xij denote the
predictor for subject i at observation j, a vector of dimension l × 1, let yij be the corresponding binary response variable, Zij
is a predictor vector of dimension q × 1. Then the logistic mixed model is denoted as:

yij ∼ Bernoulli(℘−1(χij)), χij = Xij
′β + Zij

′ζi (1)
where β = (β1, . . . , βl) is the fixed effect coefficient vector, ζi ∼ N(0, Ω) is the ith random effect, ℘(·) is the logistic link
function with ℘(κ) = log(κ/(1 − κ)). Generally, Zij is set as a subset of Xij . Assume Xij and Zij include all the candidate
predictors, we are interested in searching for a subset of important predictors to be included in the model.

Obviously, the logistic model is nonlinear and thus we cannot get conditional conjugacy even with simple normal
priors, which ultimately causes inefficiency in computation. To overcome the cumbersome nonlinear issue, we take several
approaches of approximation to convert the nonlinear model to the standard linear models. First, we take the approach
by Albert and Chib (1997) that the logistic distribution can be closely approximated by the t distribution. With auxiliary
variables, Model (1) is equivalent to the following representation:

yij = 1 : y∗

ij > 0

yij = 0 : y∗

ij ≤ 0

where y∗

ij is an underlying value with the logistic distribution with location parameter Xij
′β + Zij

′ζi and density function as
follows:

f (y∗

ij|Xij, Zij, βi, ζi) =
exp{−(y∗

ij − Xij
′β − Zijζi)}

{1 + exp[−(y∗

ij − Xij
′β − Zijζi)]}

2
. (2)

Second, as noted byWest (1987), the t distribution can be expressed as a scale mixture of normals. Thus, y∗

ij is approximated
as a non-central t distribution with location parameter Xij

′β + Zij
′ζi, degree of freedom v and scale parameter σ 2. Then we

can get the following model:

y∗

ij = Xij
′β + Zij

′ζi + ϵij, ϵij ∼ N(0, σ 2/φij), φij ∼ G(v/2, v/2) (3)
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