Computational Statistics and Data Analysis 92 (2015) 13-25

Contents lists available at ScienceDirect = <°MPl;TTﬂIIgT':g§
& DATA ANALYSIS

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Covariance matrix estimation for left-censored data” @CmsMark

Maiju Pesonen®*, Henri Pesonen?, Jaakko Nevalainen b

2 Department of Mathematics and Statistics, University of Turku, Finland
b School of Health Sciences, University of Tampere, Finland

HIGHLIGHTS

e ML based covariance matrix estimator for left-censored data is introduced.
e Computation times are decreased considerably with parallelized pairwise estimation.
e The proposed estimators produce unbiased estimates with reasonable variation.

ARTICLE INFO ABSTRACT

Article history: Multivariate methods often rely on a sample covariance matrix. The conventional estima-
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modern measuring technology, such as mass spectrometry, left-censored values caused by
denoising the data are a commonplace phenomena. Left-censored values are low-level con-
centrations that are considered too imprecise to be reported as a single number but known
Maximum likelihood estimation tp ex'ist somewhere bereen zero and Fhe laboratory’s lower limit of detection. Maximum
Covariance matrix likelihood-based covariance matrix estimators that allow the presence of the left-censored
Left-censoring values without substituting them with a constant or ignoring them completely are consid-
Non-detects ered. The presented estimators efficiently use all the information available and thus, based
on simulation studies, produce the least biased estimates compared to often used compet-
ing estimators. As the genuine maximum likelihood estimate can be solved fast only in low
dimensions, it is suggested to estimate the covariance matrix element-wise and then ad-
just the resulting covariance matrix to achieve positive semi-definiteness. It is shown that
the new approach succeeds in decreasing the computation times substantially and still pro-
duces accurate estimates. Finally, as an example, a left-censored data set of toxic chemicals
is explored.
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1. Introduction

Multivariate methods often rely on the sample covariance matrix. For example, principal component analysis, which is
used to describe high dimensional data in lower dimensions, uses the eigenvalue decomposition of the covariance matrix.
In canonical correlation analysis, blocks of the covariance matrix are used to find the maximal correlation between linear
combinations of variables belonging to two different data sets. The conventional estimators of the covariance matrix require

* A data set used in Section 5 is available online at http://dx.doi.org/10.1016/j.csda.2015.06.005.
* Correspondence to: Department of Mathematics and Statistics, Assistentinkatu 7, Publicum 4th floor, 20014 University of Turku, Finland. Tel.: +358 2
3335444.
E-mail address: mekuja@utu.fi (M. Pesonen).

http://dx.doi.org/10.1016/j.csda.2015.06.005
0167-9473/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.csda.2015.06.005
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2015.06.005&domain=pdf
http://dx.doi.org/10.1016/j.csda.2015.06.005
mailto:mekuja@utu.fi
http://dx.doi.org/10.1016/j.csda.2015.06.005

14 M. Pesonen et al. / Computational Statistics and Data Analysis 92 (2015) 13-25

complete data vectors on all subjects, which is an assumption that can frequently not be met. Many fields of life sciences are
constrained by the measurement accuracy of modern measurement technology. Often, it is impossible to quantify the exact
concentration or the complete absence of a compound, especially at the low end of the detectable concentration range.
The lowest concentration that can be reliably detected with the given analytical method is referred to as the lower limit
of detection (LLOD) (Browne and Whitcomb, 2010). Measurements falling below the LLOD are referred to as left-censored
values or, in some contexts, non-detects.

For data that contain left-censored values, if the analysis is carried out using only the completely observed data, the
means of the concentrations would be overestimated and the standard deviations would be underestimated. Consequently,
any related test statistic or estimate would be biased. Thus, neglecting these informative censored values can lead to a severe
bias and a loss of precision due to the decrease of the effective sample size.

In the presence of left-censored values, a common and simple way to deal with the estimation of the covariance matrix
is to delete any subject containing at least one censored value. To avoid completely ignoring these subjects, Little and
Rubin (2002) propose to build the estimate of the covariance matrix one element at a time by using all observations for
which both values are present. However, the resulting covariance matrix estimate is not necessarily positive semi-definite.
According to Mehrotra (1995), the efficient use of all observed data is more important than the possible lack of positive
semi-definiteness. If the positive semi-definiteness is lost, he recommends the element-wise estimation of the variances
and covariances combined with a possible adjustment.

Another commonly used approach is to substitute the left-censored values with a suitable constant and then to compute
the sample covariance from the resulting complete data. The potential substitution value can be the sample mean of the
uncensored values for the corresponding variable, zero, LLOD/2, or the minimum of the observed values. These alternative
approaches have been investigated in previous studies (Farnham et al., 2002; El-Shaarawi and Esterby, 1992; Succop et al.,
2004). All of them are more or less biased, but they are still used despite the criticism (Helsel, 2005, 2006).

In addition to the mentioned quick fixes, there exists more eloquent methods to overcome the challenges set by censored
data. Instead of single and simple substitutions, one approach is to multiply impute the censored values. The key idea is to
use the conditional distribution of the observed data to generate a set of plausible imputations for the censored data (Rubin,
2004, 1996; Carpenter and Kenward, 2013). Imputations are repeated several times, creating multiple data sets, which are
then analyzed individually as if they were complete. Thus, if the main interest lies in estimating the covariance matrix for
the left-censored data, the multiple imputation would be followed by computing the standard sample covariances for each
of the imputed data sets. Finally, the results are combined across all multiply imputed data sets by so-called “Rubin’s rules”,
which incorporate the imputation-related uncertainty into the analysis (Rubin, 2004). The multiple imputation methods
for left-censored data may be appealing due to their relatively simple computational algorithms. The literature includes
applications in univariate (Baccarelli et al., 2005; Huybrechts et al., 2002), bivariate (Chen et al., 2011) and multivariate
settings (Hopke et al., 2001; Chen et al., 2013).

Hewett and Ganser (2007) divide censored data analysis methods into four categories: substitution methods, log-probit
regression, maximum likelihood (ML) estimation methods, and non-parametric methods. None of the methods has been
recommended for all different scenarios. The recommendation depends on the sample size, the divergence from log-normal
distribution or the degree of censoring. However, due to its many desirable statistical properties, ML estimation is often
considered the gold standard provided the data is well-described by some parametric probability distribution (Helsel, 1990;
Koo et al., 2002; Zhao and Frey, 2006).

Extensive literature exists regarding univariate and bivariate ML-based methods for estimating the measures of centrality
and variability in the presence of the left-censored values, such as Lyles et al. (2001), Lynn (2001) and Williams and Ebel
(2014). The majority of these works are based on the normality assumption. Song et al. (2004) propose an alternative, more
robust approach based on generalized estimating equations to estimate the correlation between two continuous variables
with left-censored values. Their method also has an advantage of not requiring time consuming optimization routines.

The extensions of ML-based estimation techniques to the multivariate setting are fewer. If it could be assumed that
each variable is identically distributed (normal, gamma, or Weibull), then the results proposed by Gupta (1952) and Harter
and Moore (1967) could be applied. In practice, however, this is not often a realistic assumption. Chung (1993) proposes a
covariance matrix estimation method that uses marginal ML estimation. Despite its good practical properties, theoretically
it is not a ML estimator but rather a good-enough approximation.

Building on the work of Lyles et al. (2001), Perkins et al. (2013) propose a ML estimator for the mean vector and the
covariance matrix based on the multivariate normality assumption in the presence of left-censored values. They formulate
the likelihood function as a product of the marginal multivariate distribution for the observed variables and the conditional
multivariate distribution for the left-censored variables. They also develop an approximation for the Fisher information
and covariance matrix for the estimated parameters and give an example based on a three-parameter multivariate normal
distribution.

To overcome the complexity of estimating the parameters of multivariate normal and log-normal models by maximizing
the logarithm of the likelihood equations, Hoffmann and Johnson (2014) proposes a pseudo-likelihood approach. The
pseudo-likelihood estimate maximizes a computationally simpler approximation of the log-likelihood function but is not
equal to it.

Against this background, we address the challenge of dealing with the left-censoring in the analysis of multivariate data
and introduce an efficient way to use the values that are below the set LLOD. We formulate the likelihood maximization



Download English Version:

https://daneshyari.com/en/article/416415

Download Persian Version:

https://daneshyari.com/article/416415

Daneshyari.com


https://daneshyari.com/en/article/416415
https://daneshyari.com/article/416415
https://daneshyari.com

