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a b s t r a c t

In this paper, we introduce the notion of the central mean subspace when the response is
multivariate, and propose a profile least squares approach to perform estimation and infer-
ence. Unlike existing methods in the sufficient dimension reduction literature, the profile
least squares method does not require any distributional assumptions on the covariates,
and facilitates statistical inference on the central mean subspace. We demonstrate theo-
retically and empirically that the properly weighted profile least squares approach is more
efficient than its unweighted counterpart. We further confirm the promising finite-sample
performance of our proposal through comprehensive simulations and an application to an
etiologic study on essential hypertension conducted in P. R. China.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Li (1991), sufficient dimension reduction has emerged as an important statistical technique
in high dimensional data analysis. The goal of sufficient dimension reduction is to replace the original high dimensional
covariates with a few linear combinations while retaining full information of regression. In the regression context we are
often interested in themean function of a univariate response Y given x = (X1, . . . , Xp)

T, denoted E(Y | x). How to estimate
E(Y | x) precisely and efficiently when x is high dimensional has long been a challenging issue. To combine both the
flexibility of nonparametric modeling and the interpretability of parametric modeling, Cook and Li (2002) assumed that,
there exists a p × da matrix α such that E(Y | x) = E(Y | xTα). This assumption implies that the p-vector x can be replaced
with da linear combinations xTα, and such a replacement will not lose information of the mean function. In practice da is
usually small, say da = 1, 2 or 3, thus we can estimate E(Y | xTα) precisely and efficiently as long as a consistent estimator
of α is available. Observing that α is not identifiable, Cook and Li (2002) defined the central mean subspace, denoted SE(Y |x),
as the smallest column space of α. In other words, SE(Y |x) = span(α) for α with the smallest column dimension and satisfies
E(Y | x) = E(Y | xTα).

Many approaches have been developed to recover SE(Y |x) in the area of sufficient dimension reduction. In the par-
ticular case with da = 1, for example, Li and Duan (1989) observed that the ordinary least squares estimator is sim-
ple yet useful in estimating SE(Y |x) when x follows an elliptical distribution. Cook and Li (2002) further proved that,
span


{var(x)}−1 cov(x, Y )


⊆ SE(Y |x) when x satisfies the linearity condition that E(x | xTβ) is a linear function of x.

Powell et al. (1989) and Härdle and Stoker (1989) introduced an average derivative estimation method. Ichimura (1993)
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and Härdle et al. (1993) proposed a profile least squares approach. For general da not necessary to be 1, if x satisfies both
the linearity condition and the constant variance condition that var(x | xTβ) is a constant matrix, Li (1992) proved that
span


{var(x)}−1 E


(x − E(x))(x − E(x))T(Y − E(Y ))


⊆ SE(Y |x). Nevertheless, requiring the covariates x satisfy the afore-

mentioned distributional assumptions, such as the linearity and the constant variance conditions, limits the applicability of
thesemethods. Xia et al. (2002) designed aminimumaverage variance estimation (MAVE) to recoverSE(Y |x), as long as the co-
variates are continuous. Recently, Ma and Zhu (2014) developed a semiparametric approach which recovers SE(Y |x) through
solving several estimating equations. The semiparametric approach completely removes the distributional assumptions on
x, and facilitates statistical inferences on SE(Y |x). In addition, Ma and Zhu (2014) found that the efficient estimator of SE(Y |x)
is indeed not practical, though some locally efficient estimators of SE(Y |x) are available. All the aforementioned methods can
only be used when the response is univariate.

In this paper, we adapt the notion of central mean subspace of Cook and Li (2002) to multivariate response data. Write
the response vector as y = (Y1, . . . , Yq)

T. We define the central mean subspace SE(y|x) as the smallest column space of β if
it satisfies

E(y | x) = E(y | xTβ), or equivalently, E(Yk | x) = E(Yk | xTβ), for k = 1, . . . , q. (1.1)

At the population level, we show that the properties of SE(Y |x), particularly those stated in Proposition 1 of Cook and Li
(2002), also applies to SE(y|x). At the sample level, we design a profile least squares approach to estimate SE(y|x). Our profile
least squares approach can be regarded as an extension of the approach proposed by Ichimura (1993) and Härdle et al.
(1993). In the particular homoscedastic scenario for univariate response data, our profile least squares method is also
equivalent to the estimating equation approach of Ma and Zhu (2014). However, our approach is different from the existing
researches in that ours is designed for multivariate response data and allows for multiple linear combinations. Our profile
least squares approach also inherits the merits of the semiparametric approach of Ma and Zhu (2014). In particular, our
approach does not require any distributional assumptions of x, and statistical inference built upon profile least squares can
be easily implemented. We further observe that, the profile least squares approach, if it is properly weighted by considering
correlations among multivariate response variables, can improve the efficiency of the unweighted approach in estimating
SE(y|x).

Estimation of the central mean subspace for multivariate response data has not yet received much attention in the past
decades, largely due to the fact that

SE(y|x) =

q
k=1

SE(Yk|x).

Thus, one may argue that estimating SE(y|x) jointly amounts to estimating SE(Yk|x) marginally, for k = 1, . . . , q. We will
show that, estimating SE(y|x) jointly will help to improve the estimation efficiency as long as the dimension of SE(y|x) is
nonparametrically manageable. In particular, even if the response variables are all conditionally uncorrelated, estimating
SE(y|x) jointly is still more efficient than estimating SE(Yk|x) marginally. When the response variables are correlated, the
efficiency can be further improved if we take into account the correlations among the response variables. The efficiency
is an important issue from both the theoretical and the practical perspectives, particularly when statistical inference on the
parameters is much concerned.

There are many sufficient dimension reduction approaches to identify and to estimate the central mean subspace
when the response is univariate. To the best of our knowledge, however, very few existing works provide inferential
results about the central mean subspace. Ma and Zhu (2014) is probably the first attempt on this topic. They show that
the efficient estimator of the central mean subspace is indeed not practical, and their work is designed for univariate
response. We consider the inference issue when the response is multivariate, and show that the efficiency in estimating the
central mean subspace can be improved by estimating SE(y|x) jointly and considering the correlations among the response
variables.

The rest of this article is organized as follows. In Section 2, we first adapt the notation of the central mean subspace to
multivariate response data, then derive the properties of SE(y|x) at the population level. At the sample level, we introduce
a profile least squares approach to estimating SE(y|x), and establish the asymptotic properties of the resultant estimators.
We demonstrate themethodologies through simulations and an analysis of the essential hypertension data in Section 3.We
conclude this paper with a brief discussion in Section 4. All proofs are given in the Appendix.

2. The methodology development

2.1. The central mean subspace for multivariate response data

Our interest is in estimating the mean function E(y | x), where y = (Y1, . . . , Yq)
T and x = (X1, . . . , Xp)

T. Sufficient
dimension reduction hinges on finding a p× dmatrix β such that the d-vector xTβ contains all the information about y that
is available from the mean function. In other words, we hope to find β such that E(y | x) = E(y | xTβ). In our context, q and
d are small while p is relatively large.
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