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a b s t r a c t

Strategies for making inference in the presence of missing data after conducting a Multiple
Imputation (MI) procedure are considered. An approach which approximates the posterior
distribution for parameters using a mixture of t-distributions is proposed. Simulated
experiments show this approach improves inferences in some aspects, making them
more stable over repeated analysis and creating narrower bounds for certain common
statistics of interest. Extensions to the existing literature have been executed that provide
further stability to inferences and also a strong potential to identify ways to make the
analysis procedure more flexible. The competing methods have been first compared
using simulated data sets and then a real data set concerning analysis of the effect of
breastfeeding duration on children’s cognitive ability. R code to implement the methods
used is available as online supplementary material.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multiple Imputation, MI (Rubin, 1987) is one of the most popular approaches to address missing data problems (van
Buuren, 2012). In this approach an imputer imputes missing values from their posterior predictive distribution conditional
on the observed data. The imputer repeats this processm times, thus generatingm imputed data sets. Thesem data sets can
then be released to analysts. Analysts process each imputed data set as if it were fully observed, obtaining point and variance
estimates in the same way they would have proceeded faced with the original data. Simple rules proposed by Rubin (1987)
allow analysts to combine their estimates across imputations and obtain appropriate point and variance estimates that take
into account the additional uncertainty due to the missing data.

Rubin’s combining rules in general perform quite well whenm is large, and for a wide variety of estimates such as means
and regression coefficients (Rubin, 1996), essentially where a normal approximation for the sampling distribution of the
estimator (if frequentist) or for the posterior distribution of the estimand (if Bayesian) is a reasonable assumption. We will
evaluate the performance of the combining rules assuming that we are taking a Bayesian inference approach, although
similar conclusions could be expected under a frequentist approach, provided non-informative priors are used.

However, some evidence suggests that the distributional approximations underlying the MI approach to inferences may
not be suitable in all cases (Marshall et al., 2009). Concerns regarding the variability of inferences obtained from multiply-
imputed data (Graham et al., 2007; Bodner, 2008) and improving computation power both motivate the need to avoid
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such approximations. In particular, fitting Rubin’s proposed t distribution to approximate the posterior distribution of the
estimand may not be necessary or even suitable in some cases. Recent work has focused on sampling based approaches
that utilise the imputed data sets to approximate the full posterior distribution of the estimand. Zhou and Reiter (2010)
combined posterior draws of the estimands from each imputed data set to approximate the posterior distribution. Steele
et al. (2010) used the fact that for a large enough sample size, posterior distributions conditional on an imputed data set
can be well approximated with a normal distribution and suggested modelling the posterior distribution using a mixture of
normals approach, where each normal distribution receives equal weight, 1/m. This approach was shown to be beneficial in
creating more stable confidence intervals than the usual method of moments t distribution approximation. However, one
drawback with this approach was that it resulted in confidence intervals that tended to be too narrow with a lower than
nominal coverage rate. The purpose of this paper is to extend this methodology to consider approximating the posterior
distribution with mixture of t distributions. By doing so, we hope to correct for the problem of under coverage noted by
Steele et al. (2010) while still retaining the benefits of improved stability in the confidence intervals created with such an
approach.

The rest of the paper is organised as follows. In Section 2 we briefly review how one can use multiply imputed data sets
to infer about an estimand in the population and illustrate the drawbacks of existing inferential techniques. In Section 3
we propose the inferential procedure based on a mixture of t-distributions. In Section 4 we illustrate the procedure on a
breast-feeding study. Finally in Section 5 we end with some concluding remarks.

2. Multiple imputation inference

Suppose we have a n × p covariate data set X = (x1, . . . , xp), where xij is the ith unit’s value for the jth covariate,
i = 1, . . . , n, j = 1, . . . , p. For each xij we also define a corresponding missing data indicator mij where mij = 1 implies
xij is missing and mij = 0 implies xij is observed. We can then decompose X into its missing and observed parts with
Xmis = {xij : mij = 1} and Xobs = {xij : mij = 0} respectively.

Inmultiple imputationwe fill inmissing valueswith draws from their predictive distribution conditional on the observed
values i.e. from p(Xmis|Xobs). We take m sets of draws to create m complete data sets; denote these data sets by X (k)

com, k =

1, . . . ,m. We assume that an analyst of the data is interested in inferring about some estimand in the population,Q , and that
the posterior distribution of the estimand, i.e. p(Q |X), can be well approximatedwith a normal distribution. For large values
of n and for most common estimands, such as the sample mean of a variable in the data or coefficients from a regression
model, the normal will be a reasonable approximation. The analyst then proceeds to obtain m sets of point and variances
estimates, qk and uk, for Q in each of the imputed data sets X (k)

com. Typically an analyst will then combine the estimates in the
following way:
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Inferences can then be made using q̄ as a point estimate for Q and Tm as an estimate of the variance of q̄. The variance
clearly reflects the additional uncertainty present due to the missing data. In the absence of missing data, the average
of individual variances Ū would be sufficient as a final variance estimate; the variance of individual point estimates, B
adds to this estimate and the 1/m correction provides further variability considering a finite number of imputations, m.
Confidence intervals can be constructed using a t-distribution with degrees of freedom given by ν = (m − 1)(1 + r−1

m )2,
where, the relative increase in variance due to missing information, rm = (1 + 1/m)B̄/Ū . This expression is obtained
through an approximation that matches the first two posterior moments of Tm to a chi-squared distribution. For smallm, an
analyst can use the adjusted degrees of freedom, as proposed by Barnard and Rubin (1999), ν∗ = 1/(1/ν + 1/ν0), where
ν0 = (a + 1) ∗ a/(a + 3) ∗ Ū/(Ū + (1 + 1/m)B̄) and a is the complete data degrees of freedom.

While this procedure is straightforward and relatively easy to apply in standard software packages, some of its limitations
have been noted. More specifically, there have been concerns about the reproducibility of inferences over repeated
application of the MI procedure with Rubin’s combining rules. In particular, inferences gathered from a small number
of imputations, such as length of confidence intervals and p-values, have been shown to have considerable variability
over repeated MI analysis. Graham et al. (2007) demonstrate the power fall-off of a hypothesis test when the number of
imputations falls from 100 to 3. Bodner (2008) and White et al. (2011) further support this observation demonstrating
concern over the variability of inferences. Nevertheless, the confidence intervals obtained from Rubin’s combining rules
provide an appropriate probability coverage on average (Rubin and Schenker, 1986).

The current literature recommends increasing the number of imputations, m, to be able to produce stable inferences,
which, given the processing power ofmodern computers, is a practical solution. Nevertheless, there are several reasonswhy
the use of smallm is still desirable. Practices in many academic disciplines and the industry are often driven by convention
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