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a b s t r a c t

Matrix completion discriminant analysis (MCDA) is designed for semi-supervised learning
where the rate of missingness is high and predictors vastly outnumber cases. MCDA op-
erates by mapping class labels to the vertices of a regular simplex. With c classes, these
vertices are arranged on the surface of the unit sphere in c − 1 dimensional Euclidean
space. Because all pairs of vertices are equidistant, the classes are treated symmetrically.
To assign unlabeled cases to classes, the data is entered into a large matrix (cases along
rows and predictors along columns) that is augmented by vertex coordinates stored in the
last c − 1 columns. Once the matrix is constructed, its missing entries can be filled in by
matrix completion. To carry out matrix completion, one minimizes a sum of squares plus a
nuclear norm penalty. The simplest solution invokes an MM algorithm and singular value
decomposition. Choice of the penalty tuning constant can be achieved by cross validation
on randomly withheld case labels. Once the matrix is completed, an unlabeled case is as-
signed to the class vertex closest to the point deposited in its last c − 1 columns. A variety
of examples drawn from the statistical literature demonstrate that MCDA is competitive
on traditional problems and outperforms alternatives on large-scale problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Whenever large data sets are collected, missing responses and missing predictors occur. Missing data values are now
classified as missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Statisti-
cians have devised a host of methods for coping with missing data, including: listwise deletion, pairwise deletion, hot deck
imputation, mean substitution, regression substitution, and multiple imputation. In model fitting in general, and regression
in particular, themodern tendency is to imputemissing values bymaximum likelihood estimates or posteriormeans under a
Gaussianmodel (Little and Rubin, 2002; Schafer, 2010). Regardless of themethod of imputation, the consensus among statis-
ticians is that one should use all available information. Failures to impute data can increase bias and compromise inference.

For data presented in matrix form, a new imputation method is now available. Matrix completion aims to recover a full
matrix – usually of low rank – from a subset of observed entries. During the past five years, the subject of matrix completion
has captured the attention of researchers from a variety of backgrounds in statistics, applied mathematics, and computer
science. Candès and Recht (2009) prove that a low-rank matrix can be almost perfectly recovered when the number of
observed entries exceeds a certain level. Fortunately, their strong uniformity condition on sampled entries can be relaxed

∗ Corresponding author.
E-mail addresses: tongtong_wu@urmc.rochester.edu (T.T. Wu), klange@ucla.edu (K. Lange).

http://dx.doi.org/10.1016/j.csda.2015.06.006
0167-9473/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2015.06.006
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2015.06.006&domain=pdf
mailto:tongtong_wu@urmc.rochester.edu
mailto:klange@ucla.edu
http://dx.doi.org/10.1016/j.csda.2015.06.006


116 T.T. Wu, K. Lange / Computational Statistics and Data Analysis 92 (2015) 115–125

(Recht, 2011). Matrix completion can be accomplished by several algorithms: subspace evolution and transfer (SET) (Dai and
Milenkovic, 2009), gradient algorithms applied to the primal and dual problems (Lin et al., 2009), singular value thresholding
(SVT) (Cai et al., 2010; Hu et al., 2012), fixed point and Bregman iteration (Ma et al., 2011), the alternating direction method
(Chen et al., 2012; Yuan et al., 2009), modified fixed point continuation (Ma and Zhi, 2011), and alternating minimization
(Jain et al., 2012).

Methods for handling missing data in discriminant analysis have lagged methods for model fitting. Most research has
focused on classification trees and the nature of missingness, for example, whether missingness occurs in the testing data
(Saar-Tsechansky and Provost, 2007), in the training data, or in a combination of both (Ding and Simonoff, 2010). Other
relevant distinctions include missing responses in both training and testing (Ding and Simonoff, 2010) and MCAR (Feelders,
1999; Kim and Yates, 2003; Zhang et al., 2005) versus a combination of MCAR, MAR, and MNAR (Kalousis and Hilario, 2000;
Twala, 2009). Farhangfar et al. (2008) evaluated a variety of imputation methods on classifiers for discrete data, while Sun
et al. (2009) studied the impact of imputation on classification accuracywith DNAmicroarray data. A common theme among
these and other papers (Acuna and Rodriguez, 2004; Luengo et al., 2012; Garcia-Laencina et al., 2010) is the deterioration
of classification accuracy as the rate of missingness increases. Standard imputation methods are ill equipped to handle
high rates of missingness. Two existing papers advocate matrix completion to handle missing data in transductive learning
(Cabral et al., 2011; Goldberg et al., 2010). However, these papers deal with multi-label classification rather than multi-
category classification and employ a fixed point continuation algorithm rather than an MM algorithm.

Our new combination of matrix completion with Vertex Discriminant Analysis (VDA) (Lange and Wu, 2008; Wu and
Lange, 2010; Wu and Wu, 2012) extends VDA into the realm of semi-supervised learning. VDA is geometrically motivated
and attuned to matrix representation. Missing observations are ubiquitous in practice, and discarding cases with missing
predictors leads to less accurate classification. Instead of conducting imputation and classification sequentially, we believe
that classification can inform imputation and advocate conducting them simultaneously. Our new method, which we call
Matrix Completion Discriminant Analysis (MCDA), is specifically designed for data exhibiting high rates of missingness and
an excess of features over cases. It is precisely in this setting of high-dimensional sparse data that matrix completion is
expected to shine. Our cancer classification results validate this intuition and justify the inclusion of incomplete cases and
the strategy of simultaneous imputation and classification.

2. Matrix completion discriminant analysis

2.1. Vertex discriminant analysis

VDA is a novel supervised classification method (Lange and Wu, 2008; Wu and Lange, 2010; Wu andWu, 2012). In clas-
sification with c classes,it operates by mapping the classes to the c vertices of a regular simplex in the Euclidean space Rc−1.
For example in binary classification, the two classes correspond to the numbers −1 and 1 on the real line. In trinary classifi-
cation, the three classes correspond to the three vertices of an equilateral triangle in the plane. The advantages of mapping
categories to vertices include dimension reduction, simplification of computation, ease of interpretation, and enhancement
of geometric intuition. It is impossible to situate more than c equidistant points in Rc−1 (Lange and Wu, 2008).

There are several versions of VDA: VDAR (Lange and Wu, 2008), VDALE (Wu and Lange, 2010), and VDAK (Wu and Wu,
2012), where the subscripts stand for Ridge, Lasso and Euclidean, and Kernel, respectively. The first two are linear classifiers,
and the third is a nonlinear classifier. The linear VDA classifiers rely on the linear regressionmodel yi = Axi+b, i = 1, . . . , n,
to predict the vertex associatedwith case i. Here xi is a p-dimensional predictor vector for case i,A = (ajk) is a (c−1)×pma-
trix of slopes, and b = (bj) is a c−1 column vector of intercepts. The linear VDA classifiers minimized the objective function

R(θ) =
1
n

n
i=1

g(yi − Axi − b) + λP(A), (1)

where g(z) = ∥z∥2,ϵ = max{∥z∥2 − ϵ, 0} denotes ϵ-insensitive Euclidean distance, θ signifies the parameters (A, b), and
P(A) denotes the penalty imposed on A. In VDAR,

P(A) =

c−1
j=1

p
k=1

a2jk

is a ridge penalty, while in VDALE,

P(A) =

c−1
j=1

p
k=1

|ajk| +

c−1
j=1

 p
k=1

a2jk

is a mixture of lasso and Euclidean penalties. Lasso and Euclidean penalties promote spareness in the estimate of the slope
matrix A.

Nonlinear VDAK exploits reproducing kernel Hilbert spaces (RKHS). Every suchHilbert space of functionsHK is generated
by a kernel function K(·, ·). If we fix a point y, then the function x → K(x, y) belongs to HK . In the current setting x is the
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