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a b s t r a c t

Studies of ocular disease and analyses of time to disease onset are complicated by the
correlation expected between the two eyes from a single patient. We overcome these
statistical modeling challenges through a nonparametric Bayesian frailty model. While
this model suggests itself as a natural one for such complex data structures, model fitting
routines become overwhelmingly complicated and computationally intensive given the
nonparametric form assumed for the frailty distribution and baseline hazard function. We
consider empirical Bayesian methods to alleviate these difficulties through a routine that
iterates between frequentist, data-driven estimation of the cumulative baseline hazard and
Markov chain Monte Carlo estimation of the frailty and regression coefficients. We show
both in theory and through simulation that this approach yields consistent estimators of the
parameters of interest. We then apply the method to the short-wave automated perimetry
(SWAP) data set to study risk factors of glaucomatous visual field deficits.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Analyses of data from studies of visual field deficits and glaucomatous progression are complicated by correlations
between observed failure times from fellow eyes of a subject. Bayesian frailty models have proven to be a valuable tool
for modeling this dependence through a random effect term in a proportional hazards model. However, the practitioner
is left to choose from a wide array of frailty distributions, the choice of which may affect inferences drawn on parameters
(hazard ratios) of interest. Not to mention, the dependence structure is unknown presenting difficulties in parameterizing
a frailty model and exposing ‘‘default’’ models, such as a gamma frailty distribution, as seemingly arbitrary.

A nonparametric approach to frailty modeling provides a flexible alternative in which the frailty distribution is left
unspecified, letting the data a posteriori drive the functional form. In such models, both the frailty distribution and
the baseline hazard rate are modeled nonparametrically. The nonparametric frailty term presents no difficulties in the
construction of a Markov chain Monte Carlo (MCMC) algorithm for drawing posterior inferences. Standard Gibbs samplers
for fitting nonparametric Bayesian models (e.g., Walker and Mallick, 1997) may be applied for sampling full conditional
distributions on the frailties and the parametric portion of the proportional hazards model. However, incorporation of the
baseline hazard into theMarkov chainMonte Carlo (MCMC) routine turns out to be a challenging task. Awide array ofmodels
for the baseline hazard and MCMC methods for fitting these models have been proposed in the literature (for example,
see Ibrahim et al., 2001). However, as Gustafson et al. (2003) mentions in the motivation of their work, the routines are
computationally and mathematically intensive and not easily automated, leaving the non-expert with a difficult task in
applying such inferential procedures.
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In our motivating application the primary goal is to infer hazard rates, studying risk factors for glaucoma and short
wavelength automated perimetry for detecting visual field defects. The baseline hazard rate is then effectively a nuisance
parameter (function). An inferential routine for the baseline hazard which requires complicated mathematical derivation
and substantial computational coding and implementation cost is clearly undesirable. In this paper we propose an empirical
Bayes approach to alleviate difficulties in modeling the baseline hazard and subsequently incorporating it into an MCMC
algorithm. The idea derives from the work of Casella (2001) in which we use the data to ‘‘estimate away’’ nuisance
parameters, focusing computational and inferential effort on the parameters of interest. In the nonparametric Bayesian
frailty model, we estimate the baseline hazard through a nonparametric frequentist estimator and then construct an MCMC
algorithm to iteratively simulate posterior samples conditional on this empirical Bayes estimate. The method draws on the
deep theory and vast implementation options of MCMC and EM algorithms. Furthermore, the routine is simple to automate
within the construct of the Gibbs and Hastings samplers for fitting nonparametric Bayesian models. We argue that this
empirical Bayes–Hastings sampler requires less coding time and computational expense than the popular piecewise hazard
approaches (e.g., Walker and Mallick, 1997), requires less tweaking of tuning and model parameters in fact lending to
complete automation.

The Bayesian frailty model with nonparametric specification of the frailty distribution is best suited for our study of
glaucomatous progression. However, the empirical Bayes–Hastings sampler in this setting, as a general approach, lends
to diagnostic tools for testing parametric forms for the frailty distribution and routines for performing model selection.
We highlight these issues in our analysis of glaucomatous visual field defects. Furthermore, the proposed modeling
and inferential strategies provide a flexible framework within which to mix and match nonparametric and parametric
components and strategies for handling nuisance parameters.

In Section 2, we formally define the nonparametric Bayesian frailty model, expressing the frailty distribution
nonparametrically through a Pólya tree process. We also define the nonparametric estimator of the cumulative baseline
hazard to be incorporated into our empirical Bayes routine. In Section 3 we, primarily for notational purposes, briefly detail
the Pólya tree distribution. In Section 4, we introduce the empirical Bayes–Hastings sampler for drawing inferences under
the semi-parametric frailty model, estimating the baseline hazard rate in a Monte Carlo E-type step in the MCMC routine.
As part of the discussion of the Hastings sampler, we derive conditions under which the random variates drawn reasonably
represent a sample from the posterior distribution of interest. We also discuss issues for optimally implementing theMCMC
sampling scheme in practice. Section 5 presents simulation studies to validate our proposedmethods for drawing inferences
under the frailty model. In Sections 6 and 7, we present routines for computing Bayes factors and traverse the regression
parameter space to evaluate parametric forms of the frailty distribution and perform variable selection within our empirical
Bayes–Hastings sampler framework. In Section 8,we illustrate our proposedmethods in the analysis of a data set for studying
glaucomatous visual field deficits. In Section 9 we conclude with a discussion of practical issues beyond the developments
and applications in this paper.

2. Frailty model

Suppose that the observed data consist of clustered, and possibly censored, failure-time data represented by Yik =

{Xik, δik, Zik}, with k = 1, . . . , Ki and i = 1, . . . , n. Xik = Tik ∧ Cik is the minimum of the failure time and the censoring
time; δik = I{(Xik = Tik)}, the failure indicator, which takes the value of 1 if (Xik = Tik) and 0 otherwise; and Zik is a p-vector
of covariates. It is assumed that the failure time vector Ti = (Ti1, . . . , TiKi)

′ is independent of the censoring time vector
Ci = (Ci1, . . . , CiKi)

′ given Zi = (Z ′

i1, . . . , Z
′

iKi
)′, i = 1, . . . , n.

The proportional hazardsmodel (Cox, 1972) has beenwidely applied in analyzing independent or univariate failure times.
As a generalization of the Cox proportional hazards model for clustered or multivariate failure times, Clayton and Cuzick
(1985) introduce the frailty model in which a random effect term (or ‘‘frailty’’) is assumed to have a multiplicative effect on
the hazard. In terms of the hazard function, the model can be stated as follows:

λik(t|Zik, Vi) = λ0(t) exp(β′Zik)Vi (1)

where λ0(t) is an unknown baseline hazard function, β is a p-vector of unknown regression parameters, and Vi is the frailty,
representing some common unobserved characteristics shared by all the failure times in the ith cluster. It is assumed that,
given the frailty Vi, failure times within the ith cluster are independent. Note that the baseline hazard function λ0 may be
assumed to depend on k, for example, in a family study when k = 1, 2 refers to mothers and daughters, respectively.

Let θi = ln Vi for each i = 1, . . . , n with the n-vector of log-frailties denoted by θ = (θ1, . . . , θn)
′. We will avoid

difficulties in specifying the frailty distribution by modeling this distribution nonparametrically. In particular, following
Walker and Mallick (1997), assume

θ1, . . . , θn i.i.d. F
F ∼ PT (α,G)
β ∼ N(µ,6) (2)

where PT (α,G) denotes a Pólya tree prior with prespecified parameters α and G (see Section 3 for details) and µ and 6 are
prespecified parameters of the normal prior distribution on the coefficients β.
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