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a b s t r a c t

The challenges of estimating hierarchical spatial models to large datasets are addressed.
With the increasing availability of geocoded scientific data, hierarchical models involving
spatial processes have become a popular method for carrying out spatial inference.
Such models are customarily estimated using Markov chain Monte Carlo algorithms
that, while immensely flexible, can become prohibitively expensive. In particular, fitting
hierarchical spatial models often involves expensive decompositions of dense matrices
whose computational complexity increases in cubic order with the number of spatial
locations. Such matrix computations are required in each iteration of the Markov
chain Monte Carlo algorithm, rendering them infeasible for large spatial datasets. The
computational challenges in analyzing large spatial datasets are considered bymerging two
recent developments. First, the predictive process model is used as a reduced-rank spatial
process, to diminish the dimensionality of the model. Then a computational framework is
developed for estimating predictive process models using the integrated nested Laplace
approximation. The settings where the first stage likelihood is Gaussian or non-Gaussian
are discussed. Issues such as predictions andmodel comparisons are also discussed. Results
are presented for synthetic data and several environmental datasets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The advent of geographic information systems have led to accurate geocoding of locations where massive amounts of
scientific data are collected. This has generated considerable interest in statistical modeling for such data; see, for example,
the books by Cressie (1993), Banerjee et al. (2004), and Schabenberger and Gotway (2004). Here, we focus upon the setting
where the number of locations yielding observations is too large for fitting desired hierarchical spatial random effects
models. Full inference and accurate assessment of uncertainty involves matrix decompositions whose complexity increases
as O(n3) in the number of locations, n, hence the infeasibility or ‘‘big n’’ problem for large datasets.

Modeling large spatial datasets has received much attention in the recent past. Vecchia (1988) proposed approximating
the likelihood with a product of appropriate conditional distributions to obtain maximum-likelihood estimates. Stein et al.
(2004) adapt this to restricted maximum likelihood estimation. Another possibility is to approximate the likelihood using
spectral representations of the spatial process like Fuentes (2007). These likelihood approximations yield a joint distribution,
but not a process that facilitates spatial interpolation. Yet another approach considers compactly supported correlation
functions, see e.g. Furrer et al. (2006), Kaufman et al. (2008), Du et al. (2009) and Sang and Huang (2012), that yield
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sparse correlation structures. More efficient sparse solvers can then be employed for kriging and variance estimation,
but the tapered structures may limit modeling flexibility. Also, full likelihood-based inference still requires determinant
computations that may be problematic.

Rather than approximations, one could build models especially geared towards handling of large spatial datasets.
These are representations of the spatial process in a lower-dimensional subspace and are often referred to as low-rank or
reduced-rank spatial models, see Higdon (2002), Kammann and Wand (2003), Stein (2007, 2008), Cressie and Johannesson
(2008), Banerjee et al. (2008) and Crainiceaniu et al. (2008). Many of these methods are variants of the so-called ‘‘subset
of regressors’’ methods used in Gaussian process regressions for large datasets in machine learning, e.g. Rasmussen and
Williams (2006). The idea here is to consider a smaller set of locations, or ‘‘knots’’, say S∗

= {s∗1, . . . , s
∗

n∗}, where the number
of knots, n∗, is fixed to bemuch smaller than the number of observed sites, and to express the spatial process realizations over
n locations in terms of its realizations over the smaller set of knots. It is reasonable to assume there will be insignificant loss
of spatial information in the underlying process from using a smaller set of locations – the knots – with adequate domain
coverage. Subsequently, we will consider a special class of low-rank processes called the predictive process, see Banerjee
et al. (2008). This arises from a conditional expectation of the original process (often referred to as the parent process) given
its realization over the knots. As such, the predictive process model is a dimension reduction technique that requires no
additional tuning parameters in the modeling.

A key issue in predictive process modeling is the number and selection of knots, which is a challenging problem, with
choice in two dimensions more difficult than in one. The choice of n∗ is governed by computational cost and sensitivity to
choice. Customarily, the analysis is implemented over different choices of n∗ and knot locations. The issue is not dissimilar
to a spatial design problem, e.g. Nychka and Saltzman (1998), Xia et al. (2006) and Diggle and Lophaven (2006). The
standard method is to experiment with different knot configurations. Using Markov chain Monte Carlo (MCMC) for such
experimentations will, however, be a daunting task and fast, accurate approximation methods will need to be explored.

In recentworkRue et al. (2009) propose an IntegratedNested LaplaceApproximation (INLA) algorithmas an alternative to
MCMC for latent Gaussianmodels. INLA presents a very versatile template for estimating latent Gaussianmodels by repeated
use of the Laplace Approximation (LA), see Tierney and Kadane (1986). Rue et al. (2009) use computationally effective
Gaussian Markov random field approximations, see Rue and Held (2005), to deliver fast and accurate approximations to
posterior marginals. Eidsvik et al. (2009) use the same Laplace techniques for irregular moderate size data from a spatial
Generalized Linear Mixed Model (GLMM). Extensive studies conducted by Eidsvik et al. (2009) and Rue et al. (2009) reveal
that, for awide class of latent Gaussianmodels, INLA produces inference that is essentially indistinguishable fromMCMC in a
mere fraction of the time required by the latter. The key to successful use of INLA, is a reasonable Gaussian approximation to
the full conditional of the latent variables, including regression effects. A numerical optimization and integration routine is
used for the covariance hyperparameters. The LAhas been a powerful tool in statistical inference. Frequentist approaches use
the LA formarginalized likelihood inference, see e.g. Breslow and Clayton (1993), Ainsworth and Dean (2006) and Evangelou
et al. (2011). In the Bayesian context it has been applied for model choice using Bayes factors, but then the full conditionals
are usually approximated by sampling, see e.g. Chib (1995) and Lewis and Raftery (1997). Hsiao et al. (2004) use the LA for
related purposes.

This article presents a framework for estimating predictive process models using INLA. The remainder of the article
evolves as follows. Section 2 discusses the spatial predictive process, its properties and how it is employed in hierarchical
spatial GLMM context. Section 3 outlines approximate Bayesian inference using INLA. Section 4 considers a number of
simulation experiments as well as practical illustrations from fisheries and forestry. Finally, Section 5 concludes the article
with a discussion and an eye towards future work.

2. Hierarchical modeling with the predictive process

In this section we will present the predictive process models for Gaussian processes and for GLMMs. Our exposition is
meant to facilitate the use of approximate Bayes inference methods applied to these models in Section 3.

2.1. The Gaussian predictive process

Geostatistical settings typically assume, at locations s ∈ D ⊆ ℜ
2, a Gaussian response variable Y (s) along with a p × 1

vector of spatially referenced predictors x(s) which are associated through a spatial regression model such as,

Y (s) = x (s)′ β + w (s) + ϵ (s) . (1)

That is, the residual comprises a spatial process, w(s), and an independent process, ϵ(s), often called the nugget. The w(s)
are spatial random effects, providing local adjustment (with structured dependence) to the mean, interpreted as capturing
the effect of unmeasured or unobserved covariates with spatial pattern.

The customary process specification for w(s) is a mean 0 Gaussian process with covariance function, C(s1, s2), denoted
GP(0, C(s1, s2)). We often specify C(s1, s2) = σ 2ρ(s1, s2;φ) where ρ(·;φ) is a correlation function and φ includes spatial

decay and smoothness parameters, yielding a constant process variance. In any event, ϵ(s)
iid
∼ N(0, τ 2) for every location

s. Prior distributions on the remaining parameters complete the hierarchical model. Customarily, the regression effect β
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