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a b s t r a c t

In the framework of the general linear model, residuals are routinely used to check
model assumptions, such as homoscedasticity, normality, and linearity of effects.
Residuals can also be employed to detect possible outliers. Various types of residuals
may be defined for linear mixed models. It is shown how residual plots can be
used to check model assumptions by comparing empirical residual distributions with
appropriate null distributions based on a parametric bootstrap approach. This allows
constructing simultaneous tolerance bounds, which helps in assessing the normality and
homoscedasticity of residuals of linear mixed models, identifying possible outliers and
interpreting residual plots. The usefulness of this method is demonstrated by applying it
to several previously published datasets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Linear mixed models (LMM) provide a flexible framework for the analysis of various types of data. They are a natural
extension of linear models (LM), where only a single random term is included, the residual error. LMMs allow specification
of more than one random term. This is a useful feature, since it is often more convenient to think of an effect as coming
from a specific normal distribution rather than having a fixed value. Many experimental designs require fitting more
than one random error term (Cochran and Cox, 1957). Robinson (1991) gives an excellent introduction to the estimation
of random effects and discusses its various fields of application. LMMs originated from estimation of genetic merits in
animal breeding, where they were first introduced by Henderson (1950). The great flexibility of random effects estimation,
commonly referred to as prediction, was soon exploited in various application domains including, for example, estimating
ore deposits using a procedure known as kriging, insurance credibility theory, and digital image processing (Robinson,
1991). With the availability of molecular marker data, LMMs are now widely used for genomic selection in animal and
plant breeding (Meuwissen et al., 2001; Piepho, 2009). Another important area of application is in the analysis of repeated
measures and longitudinal data (Verbeke and Molenberghs, 2000).

A key assumption when making inferences using LMMs is that the residual errors and random effects are normally
distributed. Lange and Ryan (1989) investigated the normality of random effects in LMMs for repeated measures data
(longitudinal data). They proposed generalized weighted normal plots, with the weights chosen to reflect the differing
sampling variances of the estimated random effects. Verbeke and Molenberghs (2000, p. 89), pointed out the inadequacy of
these plots as they cannot differentiate between a wrong choice of covariates and wrong distributional assumptions on the
error terms or the random effects.

Recently, Gumedze et al. (2010) extended a variance shift outlier model (VSOM; (Thompson, 1985)) to LMMs. The
rationale of aVSOM is to add an extra randomeffect to themodel,which accounts for extra variability introducedby a specific
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observation. Thus, numerical values are assigned to observations to quantify the amount of inflated variance attributable to
each observation. These can then be used to classify each observation as an outlier or not. Inflated variance estimates may
be employed to assign weights to observations when fitting the LMM. The VSOM approach can also be applied to groups of
observations, which allows an assessment of single random effects. Gumedze et al. stress that a VSOM has many important
benefits compared to case-deletion approaches (Cook and Weisberg, 1982), which are also available in LMMs (Christensen
et al., 1992; Haslett and Dillane, 2004), especially when groups of outliers are being considered. Shi and Chen (2012) show
that the equivalence of three common approaches to identifying influential observations and outliers in a large class of
LMMs (mean-shift, deletion, replacement) depends on the use of either Maximum Likelihood (ML) or restricted ML (REML)
employed to estimate variance components. As well, Shi and Huang (2011) present a step-wise local influence analysis
method for detecting influential observations that is applicable to LMMs and able to reveal the presence of masking effects,
a common problem in identifying influential observations. Longford (2001) provides an excellent discussion about outliers
and proposes simulation-based diagnostics for random coefficient models. He proposes the parametric bootstrap (Efron
and Tibshirani, 1993) to dispense with asymptotic theory and base inference on an approximative null distribution of an
appropriate diagnostic feature, which can be a statistic or a graphical feature. Nobre and Singer (2007) explore the residual
analysis of LMMs for repeated measures data. They also review different types of residuals, which arise in the analysis of
LMMs and present some theory. Nobre and Singer also summarize areas of application for each type of residual defined
for LMMs, e.g. checking linearity of effects, assessing the covariance structure for individual subjects, checking for outliers,
and assessing normality and homoscedasticity of residuals. Recently, Huang (2011) extended a diagnosing-method for the
misspecification of random-effects in generalized LMMs (GLMM) suitable for binary response and based on data-coarsening
to a much wider class of GLMMs with non-binary response.

The assumed normality of residual errors and normality of random effects may be assessed with quantile–quantile (QQ)
plots (Pinheiro and Bates, 2000). QQ-plots are very helpful, but their use always involves some unavoidable subjectivity,
since it is not generally obvious whether the observed pattern is acceptable or not. Therefore, it is desirable to add tolerance
bounds to such plots, to reflect the null distribution for a specific diagnostic feature, and enhance objectivity in interpreting
these plots.

In this paper, we are mainly concerned with assessing normality and homoscedasticity of various types of residuals in an
LMM. Both applications provide ameans to identify possibly outlying observations. Our approach is based on the parametric
bootstrap, which allows generation of approximative null distributions of graphical features. The manuscript is organized
as follows. We start with an example to demonstrate the general scope of our method. In Sections 3 and 4, we present the
underlying theory, and proceed in Section 5 by exemplifying our method using two published datasets. In Section 6, we
present a small simulation study to infer whether this approach maintains the expected error rate.

2. Motivating example

Nobre and Singer (2007) illustrated residual analysis for LMMs using data to compare two types of toothbrushes, a
low-cost mono-block toothbrush and a conventional toothbrush. The main interest lay in the maintenance of the capacity
to remove bacterial plaque under daily use. This dataset consisted of 32 children, aged 6–8, of which one half used the
conventional toothbrush, while the other half used the low-cost toothbrush. In four sessions, bacterial plaque indices were
evaluated before and after using the respective toothbrushes. Obviously, the data comprise repeated measures on the same
experimental unit/subject (child). Nobre and Singer (2007) used the LMM

log(yijd) = αj + β log(xijd) + bi + eijd, (1)

where yijd is the post-, xijd is the pre-treatment bacterial plaque-index of the i-th subject, in session d, using the j-th type
of toothbrush, αj is the fixed effect of the j-th type of toothbrush, β is a fixed regression coefficient, and bi ∼ N(0; σ 2

s ) and
eijd ∼ N(0; σ 2

e ) are independent randomvariables, where the former corresponds to the random subject effect and the latter
to randommeasurement error.

Fig. 1a depicts the QQ-plot of studentized conditional residuals (CR, see Section 3), i.e. the studentized estimates of the
residual errors (ê∗

ijd), well known from residual analysis of LMs. The problem for this type of plot is the difficulty of assessing
whether the plot is indicative of a departure from normality and/or whether there are possible outliers. These problems
are even more evident when observation 2 of subject 12 (12.2) and observation 4 of subject 29 (29.4) are removed, which
results in a QQ-plot that for some observers might not raise concerns about non-normality at the first glance, while others
would still see some unacceptable curvature in the plotted residuals (Fig. 1c). The two offending observations (12.2, 29.4)
were identified and classified as outlying observations by Nobre and Singer (2007).

The interpretation of QQ-plots and residual plots, as shown in Fig. 1, greatly benefits from sketching a tolerance
area/interval, which represents the expectation under a specific assumption, e.g. normality (Fig. 1a, c) or homoscedasticity
(Fig. 1b, d). The corresponding bounds define a region, where a pre-defined proportion of the whole population of a
diagnostic feature falls within, e.g. studentized CRs (Section 3). Atkinson (1981, 1985) suggests computing envelopes in half-
normal or QQ-plots in the context of linear regression, which are basically simulation-based point-wise tolerance intervals
(TI) for each order statistic of the residual vector. These envelopes facilitate the interpretation of half-normal or QQ-plots
significantly, in particular for less experienced users. Schützenmeister et al. (2012) suggested 100(1 − α)% simultaneous
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